
Partie VI

Conclusion et
perspectives





Conclusion et perspectives

LEBUT INITIAL DE CE TRAVAIL ÉTAIT d’obtenir une meilleure caractérisation de la
turbulence pouvant apparaître dans les disques d’accrétion, afin d’aboutir à une
description précise du transport turbulent. Pour ce faire, j’ai envisagé plusieurs
instabilités comme sources potentielles de turbulence :

• Instabilité sous-critique hydrodynamique. Pour traiter le cas de cette instabilité, j’ai
développé un code spectral, tridimensionnel et incompressible afin d’obtenir des simulations
dans lesquelles la dissipation numérique était contrôlée. Ce code a permis de montrer que le
transport turbulent induit par cette instabilité était très probablement trop faible pour expliquer
le transport observé dans les disques.
Une des originalités de ce travail a été l’étude poussée des différents biais numériques :

résolution, rapport d’aspect, conditions aux limites et algorithme d’intégration ont été modifiés
pour tester leur impact sur le résultat final. De plus, j’ai utilisé de manière explicite une
dissipation physique dans les simulations, ce qui a permis de mettre en évidence les problèmes
de convergence et de les maîtriser.
Enfin, des résultats expérimentaux postérieurs à mes propres travaux (Ji et al. 2006) ont

montré des conclusions similaires, signant probablement la fin de l’instabilité sous-critique
comme source de turbulence dans les disques d’accrétion.

• Instabilité strato-rotationnelle. J’ai étudié cette instabilité hydrodynamique de manière
essentiellement analytique, par une approche asymptotique. J’ai dans un premier temps dérivé
un critère d’instabilité pour les solutions les plus simples, en considérant des conditions aux
limites «variables», pouvant reproduire par exemple les conditions aux limites rigides ou libres.
J’ai ainsi montré que ces solutions n’étaient pas pertinentes pour les disques d’accrétion, car très
dépendantes des conditions aux limites radiales.
J’ai par la suite étudié les solutions dites «oscillantes» par un raccordement asymptotique à

travers plusieurs domaines d’approximation. J’ai ainsi montré que ces solution étaient instables
lorsqu’elles étaient placées dans des conditions aux limites rigides.
Enfin, un code numérique aux différences finies d’ordre élevé, dont j’avais commencé le

développement pour l’étude de l’instabilité sous-critique, a été utilisé. J’ai ainsi mis en évidence
cette instabilité numériquement, et j’ai montré que l’abandon des conditions aux limites rigides
pour des conditions shearing sheet entraînait la disparition de l’instabilité. Tous ces arguments
tendent donc à montrer que cette instabilité est de nature globale, et peu ou pas pertinente d’un
point de vue astrophysique.
Il reste cependant à obtenir un critère générique d’instabilité, qui soit indépendant du type de

solution considéré. Ce critère permettrait alors d’obtenir une réponse définitive à la pertinence
de la SRI dans les disques.
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• Instabilité magnéto-rotationnelle. Pour débuter l’étude de cette instabilité, j’ai dérivé
les critères d’instabilité linéaire dans différentes limites, en considérant une viscosité et une
résistivité moléculaire. Ce type de critère n’est pas réellement nouveau, mais les limites
analytiques obtenues permettent d’avoir un point de vue clair et complet sur le rôle des
phénomènes dissipatifs dans cette instabilité.
J’ai poursuivi cette étude en développant une extension MHD du code spectral utilisé pour

l’instabilité sous-critique. Suivant la logique de ce premier travail, j’ai cherché à comprendre
quel était le rôle des nombres sans dimensions sur le processus de saturation de la MRI. J’ai ainsi
montré un phénomène de bouffées turbulentes apparaissant au voisinage du seuil en champ fort
de l’instabilité linéaire. Cependant, l’implication de ce résultat pour la physique des disques est
encore obscure, et le rôle des conditions aux limites, de la compressibilité et de la stratification
verticale restent à clarifier.
Je me suis enfin attaché à étudier le rôle des effets dissipatifs visqueux et résistifs sur la

saturation de la turbulence MRI, ce qui avait été jusqu’à présent négligé. Bien que la saturation
semble dépendre peu des effets dissipatifs à Prandtl constant, il semble que la variation de ce
dernier entraîne des variations notables du coefficient de transport. De plus, dans le cas sans
champ magnétique vertical imposé, il semble que la turbulence disparaisse dans les cas où
Pm ! 1. Ce point met alors en doute une partie de la littérature utilisant cette topologie du
champ magnétique sans contrôler les effets dissipatifs.
Les implications astrophysiques de ces résultats sont encore à discuter, notamment en raison

des facteurs d’échelle mis en jeu entre les simulations et les disques d’accrétion réels. Il n’en
reste pas moins qu’une compréhension approfondie du phénomène de saturation de la MRI,
en fonction notamment des paramètres sans dimensions contrôlant la dissipation, semble être
un point sine qua non pour pouvoir développer un jour un modèle physiquement pertinent de
transport turbulent dans les disques.
Vu ces résultats, plusieurs pistes de recherches peuvent être proposées :

• Étudier les effets de la stratification sur le phénomène de bouffée turbulente. Dans ce
but, j’ai développé une version MHD du code différences finies utilisé ici. Remarquons
cependant que la présence d’un champmagnétique vertical dans un écoulement stratifié
pose de nombreux problèmes numériques (voir par exemple Stone et al. 1996) qu’il
conviendra de résoudre.

• Créer un modèle sous maille type LES (Large Eddy Simulation) avec des simulations
numériques locales, afin de pouvoir incorporer les effets de la turbulence dans des
simulations à grande échelle. Ce type d’approche présente cependant plusieurs
difficultés. En effet, les approches LES ont été beaucoup moins développées et testées
dans le cas MHD que dans le cas hydrodynamique. Il faudra donc probablement créer
de nouveaux modèles de clôture sous-maille si on envisage une telle approche. De
plus, les simulations numériques locales actuelles ne sont pas suffisamment résolues
pour montrer clairement un spectre inertiel, lequel est requis pour pouvoir utiliser la
séparation d’échelle d’une LES. Aussi, des moyens numériques très performants seront
nécessaires pour utiliser cette approche dans les disques d’accrétion.

• Étudier l’effet dynamo potentiellement à l’œuvre dans la MRI. Les simulations
numériques sans flux net semblent montrer que l’instabilité survit et maintient des



fluctuations de champ magnétique pendant plusieurs milliers de temps dynamique
lorsque Pm > 1. Un point important serait de savoir s’il s’agit là d’un réel effet dynamo,
et, si tel est le cas, si cet effet peut être à l’origine d’un champ magnétique à grande
échelle, susceptible d’être le vecteur des phénomènes d’éjection et de collimation des
jets.

————-





Partie VII

Annexes





ANNEXE

A
L’approximation de Hill

Plan du chapitre
1. Dérivation du modèle local de Hill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
§ 88. Pression et tension magnétique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
§ 89. Développement des équations en coordonnées cylindriques . . . . . . . . . . . . . . . . . . . . . . . . 185
§ 90. Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

1. Dérivation du modèle local de Hill
§ 88. Pression et tension magnétique

Tout d’abord, notons que dans le système d’équations MHD, on peut réécrire la force de Lorentz
ainsi que l’équation d’induction sous la forme :

(∇ × B) × B

4π
= −∇

B2

8π
+
1
4π

B · ∇B (88.326)

∂B

∂t
+ V · ∇B = B · ∇V −B(∇ · V ) + η∆B (88.327)

La force de Lorentz fait ainsi apparaître un terme de pression magnétique et un terme de
tension magnétique agissant lorsque les lignes de champ sont courbées. De plus on obtient pour
l’équation d’induction une formulation reflétant, d’une part, le transport du champ magnétique
par le champ de vitesse, et d’autre part, un terme d’élongation des tubes de champ, similaire à
l’équation de vorticité que l’on peut obtenir en hydrodynamique.

§ 89. Développement des équations en coordonnées cylindriques

On se place dans un référentiel cylindrique (r, φ, z) avec pour origine l’objet central et l’axe
vertical perpendiculaire au plan médian du disque d’accrétion. On ajoute de plus à l’équation
du mouvement (7.49) un potentiel gravitationnel dû à l’objet central30 ψ(r, z). La projection sur

30Le potentiel d’auto gravité dû au disque sera négligé en raison de la très faible masse du disque
comparativement à l’objet central (Lin & Papaloizou 1996).
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les trois composantes er, eφ, ez de l’équation du mouvement (7.49) donne alors :

( ∂

∂t
+ V · ∇

)
Vr −

V2φ
r

= −1
ρ

∂

∂r

(
P+

B2

8π

)
− ∂ψ

∂r

+
1
4πρ

B · ∇Br −
B2φ
4πρr

+
1
ρ
(∇ · T )r (89.328)

( ∂

∂t
+ V · ∇

)
Vφ +

VφVr
r

= − 1
ρr

∂

∂φ

(
P+

B2

8π

)

+
1
4πρ

B · ∇Bφ +
BφBr
4πρr

+
1
ρ
(∇ · T )φ (89.329)

( ∂

∂t
+ V · ∇

)
Vz = −1

ρ

∂

∂z

(
P+

B2

8π

)
− ∂ψ

∂z

+
1
4πρ

B · ∇Bz +
1
ρ
(∇ · T )z (89.330)

La même procédure appliquée à l’équation d’induction permet d’obtenir :

( ∂

∂t
+ V · ∇

)
Br =

(
B · ∇

)
Vr − Br∇ · V + η(∆B)r (89.331)

( ∂

∂t
+ V · ∇

)
Bφ +

VφBr
r

=
(
B · ∇

)
Vφ +

BφVr
r

− Bφ∇ · V + η(∆B)φ (89.332)
( ∂

∂t
+ V · ∇

)
Bz =

(
B · ∇

)
Vz − Bz∇ · V + η(∆B)z (89.333)

§ 90. Approximations

On supposera que l’équilibre du disque est dominé par la force gravitationnelle radiale et la
force centrifuge, ce qui permet d’obtenir (Vφ)2/r = ∂ψ/∂r. Remarquons que cette hypothèse est
cohérente avec les observations de disques montrant à un très bon niveau d’approximation un
profil de vitesse Képlerien (Lin & Papaloizou 1996).
Pour développer le système de Hill, on se place à un point de référence situé à un rayon R0,

et associé à une fréquence orbitaleΩ0 = V0φ/R0. De plus, on utilisera le référentiel tournant avec
le point de référence en posant :

r′ = r φ′ = φ − Ω0t z′ = z (90.334)

La vitesse V est alors décomposée sous la forme V = U + Ω0reφ, où U peut être interprété
comme l’écart à la vitesse képlerienne en R0, que l’on supposera petite. Par ailleurs, on néglige
les effets de courbure, en supposant que les quantités varient sur une échelle H # R0 et que l’on
se place au voisinage immédiat de R0, soit H ∼ r − R0. A l’ordre le plus élevé en U, on écrit
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finalement pour l’équation du mouvement :
( ∂

∂t′
+ U · ∇

)
Ur − 2Ω0Uφ = −1

ρ

∂

∂r

(
P+

B2

8π

)
− ∂ψ

∂r
+ Ω0r2

+
1
4πρ

B · ∇Br +
1
ρ
∇ · T r (90.335)

( ∂

∂t′
+ U · ∇

)
Uφ + 2Ω0Ur = − 1

ρr
∂

∂φ′

(
P+

B2

8π

)

+
1
4πρ

B · ∇Bφ +
1
ρ
∇ · T φ (90.336)

( ∂

∂t′
+ U · ∇

)
Uz = −1

ρ

∂

∂z′
(
P+

B2

8π

)
− ∂ψ

∂z′

+
1
4πρ

B · ∇Bz +
1
ρ
∇ · T z (90.337)

et l’équation d’induction :
( ∂

∂t
+ U · ∇

)
Br =

(
B · ∇

)
Ur − Br∇ · U + η∆Br (90.338)

( ∂

∂t
+ U · ∇

)
Bφ =

(
B · ∇

)
Uφ − Bφ∇ · U + η∆Bφ (90.339)

( ∂

∂t
+ U · ∇

)
Bz =

(
B · ∇

)
Uz − Bz∇ · U + η∆Bz (90.340)

(90.341)

Le terme de marée −∂ψ/∂r + Ω20r peut alors être simplifié en considérant l’équilibre radial
∂ψ/∂r = rΩ2(r) et en développant au premier ordre en R0 − r. On obtient alors :

−∂ψ

∂r
+ Ω20r = −2Ω0R0(r− R0)

(dΩ
dr

)

R0
(90.342)

Pour finir, on reformule le système précédent en considérant que le référentiel est cartésien dans
la limite r− R0 # R0. On utilise alors la notation :

x = R0φ′ y = (r− R0) z = −z, (90.343)

de façon à se ramener aux notations utilisées en hydrodynamique pour les écoulements de
Couette tournants. On obtient finalement le système précédent sous sa forme condensée :

( ∂

∂t
+ U · ∇

)
U = −1

ρ
∇

(
P+

B2

8π

)
+
1
4πρ

B · ∇B + 2Ω0Syey

−2Ω0 × U − ∂ψ

∂z
ez +

1
ρ
∇ · T (90.344)

∂

∂t
B = ∇ × (U × B) + η∆B (90.345)

où l’on a noté S = −(rdΩ/dr)R0 le cisaillement moyen de l’écoulement laminaire Ux = Sy,
solution des équations précédentes. Dans le cas incompressible, on pourra écrire ∇ · V = 0 de
sorte que le terme de viscosité se simplifie sous la forme 1/ρ∇ · T = ν∆V où on définira la
viscosité cinématique ν = ηv/ρ.
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Les formules présentées ici sont tirées de Press et al. (2002), Brandenburg (2003) et Canuto
et al. (1988). Elles sont données dans ce manuscrit afin d’avoir une base complète et pratique
pour étudier les schémas aux différences finis. On pourra néanmoins se reporter aux références
proposées pour plus de détails sur la dérivation de ces formules.

1. Formules aux différences finies

§ 91. Formules centrées

Je présente ici les formules différences finies centrées, respectivement d’ordre 2, 4, 6, 8 et 10, et
en considérant un pas de grille égal à δx. On obtient :

f ′i = (− fi−1 + fi+1)/(2δx) (91.346)

f ′i = ( fi−2 − 8 fi−1 + 8 fi+1 − fi+2)/(12δx) (91.347)

f ′i = (− fi−3 + 9 fi−2 − 45 fi−1 + 45 fi+1 − 9 fi+2 + fi+3)/(60δx) (91.348)

f ′i = (3 fi−4 − 32 fi−3 + 168 fi−2 − 672 fi−1 (91.349)

+672 fi+1 − 168 fi+2 + 32 fi+3 − 3 fi+4/(840δx)

f ′i = (−2 fi−5 + 25 fi−4 − 150 fi−3 + 600 fi−2 − 2100 fi−1 (91.350)

+2100 fi+1 − . . . )/(2520δx)
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pour les dérivées premières et :

f ′′i = ( fi−1 − 2 fi + fi+1)/(δx2) (91.351)

f ′′i = (− fi−2 + 16 fi−1 − 30 fi + 16 fi+1 − fi+2)/(12δ2x) (91.352)

f ′′i = (2 fi−3 − 27 fi−2 + 270 fi−1 − 490 fi + 270 fi+1 − 27 fi+2 + 2 fi+3)/(180δ2x) (91.353)

f ′′i = (−9 fi−4 + 128 fi−3 − 1008 fi−2 + 8064 fi−1 − 14350 fi (91.354)

+8064 fi+1 − . . . )/(5040δ2x)

f ′′i = (8 fi−5 − 125 fi−4 + 1000 fi−3 − 6000 fi−2 + 42000 fi−1 − 73766 fi (91.355)

+42000 fi+1 − . . . )/(25200δ2x)

pour les dérivées secondes.

§ 92. Formules upwind

Les formules upwind sont particulièrement utiles dans les équations d’advection, car elle
permettent de dissiper les oscillations parasites qui peuvent apparaître au voisinage des forts
gradients de vitesse ou de densité. Elles sont données ici pour le schéma d’advection lorsque
la vitesse est positive. On retrouvera facilement leurs expressions lorsque la vitesse est négative
par symétrie. Les formules données ci-après sont d’ordre respectif 1, 3, 4 et 6.

f ′i = (− fi−1 + fi)/δx (92.356)

f ′i = (2 fi−2 − 12 fi−1 + 6 fi + 4 fi+1)/(12δx) (92.357)

f ′i = (− fi−3 + 6 fi−2 − 18 fi−1 + 10 fi + 3 fi+1)/(12δx) (92.358)

f ′i = ( fi−4 − 8 fi−3 + 30 fi−2 − 80 fi−1 + 35 fi + 24 fi+1 − 2 fi+2)/(60δx) (92.359)

2. Algorithme de Runge-Kutta
On pourra trouver dans Press et al. (2002) une méthode de calcul générale de l’algorithme de
Runge-Kutta. Retenons simplement que ce type de schéma explicite en temps permet d’obtenir
une précision d’intégration d’ordre arbitrairement élevé. En pratique, on s’arrête souvent à
l’ordre 4. Pour une équation différentielle du type :

dψ
dt

= ∆(t,ψ), (92.360)

les deux algorithmes de Runge-Kutta les plus connus s’écrivent :

• Schéma Runge-Kutta d’ordre 2

k1i = δt∆(t,ψni )

k2i = δt∆(t+
δt
2
,ψni +

1
2
k1i)

ψn+1i = ψni + k2i
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• Schéma Runge-Kutta d’ordre 4

k1i = δt∆(t,ψni )

k2i = δt∆(t+
δt
2
,ψni +

1
2
k1i)

k3i = δt∆(t+
δt
2
,ψni +

1
2
k2i)

k4i = δt∆(t+ δt,ψni + k3i)

ψn+1i = ψn+1i +
1
6
k1i +

1
3
k2i +

1
3
k3i +

1
6
k4i
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§ 93. Dérivation de la relation de dispersion

En utilisant les hypothèses de raccordement présentées au § 63.1, on écrit les conditions aux
limites devant être vérifiées par les solutions (63.236) et (63.237). Comme le milieu (1) s’étend
jusqu’à −∞, on choisit les solutions du milieu (1) s’annulant pour y → ∞ (hypothèse de
raccordement asymptotique). En supposant que kF1 > 0, on obtient alors la condition A−

1 = 0.
Un raisonnement similaire dans le milieu (3) mène à la condition A+

3 = 0. Les conditions aux
limites (62.230),(62.231), (62.234) et (62.235) permettent alors d’écrire le système d’équations :

0 = A+
1 ρ1 exp

(
− kF1L/2

)
− A+

2 ρ2 exp
(
− kF2L/2

)
− A−

2 ρ2 exp
(
kF2L/2

)
(93.361)

0 = A+
2 ρ2 exp

(
kF2L/2

)
+ A−

2 ρ2 exp
(
− kF2L/2

)
− A−

3 ρ1 exp
(
− kF1L/2

)
(93.362)

0 = A+
1

(
ωcα + kF1(ω + ωs)

)
exp

(
− kF1L/2

)
(93.363)

− A+
2

(
ωcα + kF2(ω + ωs)

)
exp

(
− kF2L/2

)

− A−
2

(
ωcα − kF2(ω + ωs)

)
exp

(
kF2L/2

)

0 = A+
2

(
ωcα + kF2(ω − ωs)

)
exp

(
kF2L/2

)
(93.364)

+ A−
2

(
ωcα − kF2(ω − ωs)

)
exp

(
− kF2L/2

)

− A−
3

(
ωcα − kF1(ω − ωs)

)
exp

(
− kF1L/2

)

Où l’on a posé ωc = 2Ω et ωs = SLα/2. On trouve alors une solution non triviale au système
linéaire précédent en annulant le déterminant correspondant. On obtient ainsi après un peu
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d’algèbre :
(

ω2s − ω2
)(
s2 exp(kF2L) − d

2 exp(−kF2L)
)

(93.365)

−2δαωcωs
(
s exp(kF2L) − d exp(−kF2L)

)

+2ω2cα
2δ2 sinh(kF2L) = 0

avec d = kF1ρ2 − kF2ρ1 ; s = kF1ρ2 + kF2ρ1 et δ = ρ1 − ρ2. De plus, il faut appliquer les conditions
sur les profils d’équilibre hydrostatiques (Eqns. 62.228 et 62.229). Par simplicité, je supposerai
des profils isothermes, ce qui permet d’écrire la fréquence de Brunt-Väisälä sous la forme :

N2i =
(γ − 1)g2ρi

γPi
. (93.366)

Ainsi, en utilisant les conditions aux limites (62.228)-(62.229) sur les vecteurs d’onde de Froude,
on obtient finalement :

kF1 =
√

ρ2
ρ1
kF2 (93.367)

On peut alors simplifier la relation de dispersion (93.365) en utilisant un seul paramètre r =

(ρ2/ρ1)3/2, reflétant les caractéristiques différentes des milieux (1) et (2) :

ω2 = ω2s (93.368)

− 2(1− r2/3)
kF2G

αωcωs
(
r sinh(kF2L) + cosh(kF2L)

)

+
ω2cα

2(1− r2/3
)2

k2F2G
sinh(kF2L)



ANNEXE

D
Publications

Plan du chapitre
1. Subcritical hydrodynamic turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
2. Dimentionless numbers & MRI-Induced turbulent transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217

1. On the relevance of subcritical hydrodynamic turbulence to
accretion disk transport



196 ANNEXE D – PUBLICATIONS



1. SUBCRITICAL HYDRODYNAMIC TURBULENCE 197

A&A 444, 25–44 (2005)
DOI: 10.1051/0004-6361:20053683
c© ESO 2005

Astronomy
&

Astrophysics

On the relevance of subcritical hydrodynamic
turbulence to accretion disk transport

G. Lesur and P.-Y. Longaretti

Laboratoire d’Astrophysique, Observatoire de Grenoble, BP 53, 38041 Grenoble Cedex 9, France

e-mail: [geoffroy.lesur;pierre-yves.longaretti]@obs.ujf-grenoble.fr

Received 22 June 2005 / Accepted 13 September 2005

ABSTRACT

Hydrodynamic unstratified Keplerian flows are known to be linearly stable at all Reynolds numbers, but may nevertheless become turbulent

through nonlinear mechanisms. However, in the last ten years, conflicting points of view have appeared on this issue. We have revisited the

problem through numerical simulations in the shearing sheet limit. It turns out that the effect of the Coriolis force in stabilizing the flow depends

on whether the flow is cyclonic (cooperating shear and rotation vorticities) or anticyclonic (competing shear and rotation vorticities); Keplerian

flows are anticyclonic. We have obtained the following results:

i/ The Coriolis force does not quench turbulence in subcritical flows; however, turbulence is more efficient, and much more easily found, in

cyclonic flows than in anticyclonic ones.

ii/ The Reynolds number/rotation/resolution relation has been quantified in this problem. In particular we find that the resolution demand, when

moving away from the marginal stability boundary, is much more severe for anticyclonic flows than for cyclonic ones. Presently available

computer resources do not allow numerical codes to reach the Keplerian regime.

iii/ The efficiency of turbulent transport is directly correlated to the Reynolds number of transition to turbulence Rg, in such a way that the

Shakura-Sunyaev parameter α ∼ 1/Rg. This correlation is nearly independent of the flow cyclonicity. The correlation is expected on the basis

of generic physical arguments.

iv/ Even the most optimistic extrapolations of our numerical data show that subcritical turbulent transport would be too inefficient in Keplerian

flows by several orders of magnitude for astrophysical purposes. Vertical boundary conditions may play a role in this issue although no

significant effect was found in our preliminary tests.

v/ Our results suggest that the data obtained for Keplerian-like flows in a Taylor-Couette settings are largely affected by secondary flows, such

as Ekman circulation.

Key words. accretion, accretion disks – hydrodynamics – instabilities – turbulence

1. Introduction

The question of the existence and physical origin of turbu-
lence in accretion disks has been lively debated for a number of
decades. Generally speaking, there are a priori two basic ways
in which an accretion disk can become turbulent. In the first
way, some linear instability is present in the flow, and its non-
linear development eventually drives turbulence. In the second
one, the flow is linearly stable, and undergoes a direct laminar-
turbulent transition once a certain threshold in Reynolds num-
ber is reached. The first type of transition to turbulence is called
supercritical, and the second, (globally) subcritical.

Global instabilities (such as the Papaloizou & Pringle
1984 instability) seem unpromising to drive turbulence (Blaes
1987; Hawley 1991). As for local instabilities, an astrophysi-
cally important example of supercritical transition is provided
by the magneto-rotational instability (MRI) which has been

extensively studied following the pioneering work of Balbus,
Hawley and their collaborators (Balbus & Hawley 1991;
Hawley et al. 1995; see Balbus 2003, for a recent review). The
turbulent transport induced by this instability is by now char-
acterized in a number of instances, and has been called upon
even when only some fraction of the disk is ionized, as in the
midplane region of YSOs inner disks – the dead-zone (Gammie
1996; Fleming & Stone 2003). However, the reduced efficiency
of the transport in this case, as well as the possible existence
of disks which may not support MHD phenomena at all, has
prompted some upsurge of interest in purely hydrodynamic in-
stabilities. A local, baroclinic-like instability has been observed
in global simulations by Klahr & Bodenheimer (2003). Local
stability analyzes (Klahr 2004; Johnson & Gammie 2005a) find
transient instability in this context, but shearing box simula-
tions indicate that this does not drive turbulence (Johnson &
Gammie 2005b). Urpin (2003) discusses an instability related
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to vertical shear and heat transport of the Goldreich-Schubert
type (Goldreich & Schubert 1967); however, this instability
produces only a rather weak radial transport (Arlt & Urpin
2004). More recently, Dubrulle et al. (2005b) and Shalybkov
& Ruediger (2005) have discussed an instability arising when
both the fluid differential rotation and vertical stratification
are stabilizing according to the Høiland criterion. However,
it seems that this instability is connected to the presence of
walls, and is dynamically important only when the inter-wall
distance is small enough for a resonant-like interaction to take
place1 (Satomura 1981), otherwise disturbances are confined
to the near boundary zone; a related result has recently been
found in the astrophysics literature (Umurhan 2005). Earlier
analytic and numerical investigations have shown this instabil-
ity to be absent in local disk models (Goodman & Balbus 2001;
Brandenburg & Dintrans 2001; Rüdiger et al. 2002). Note fi-
nally that vertical convection in a stratified disk can in prin-
ciple also drive turbulence; however, it induces inwards trans-
port instead of the required outwards one (Cabot 1996; Stone
& Balbus 1996). Therefore, no local instability has yet been
found in the hydrodynamic regime, which would explain the
turbulent transport taking place in accretion disks.

Subcritical transition to turbulence is the subject of the
present work. The non-rotating plane Couette flow provides
a classical (and to date the best understood) example of a
system undergoing a subcritical transition. Although the na-
ture and mechanism of the transition remained elusive for
decades, it has been identified in the recent years, in labora-
tory experiments (Daviaud et al. 1992; Dauchot & Daviaud
1995a,b; Bottin et al. 1997), numerical simulations (Hamilton
et al. 1995; see also Schmiegel & Eckhardt 1997 and Eckhardt
& Mersmann 1999), and theoretical analyzes (in particular
Waleffe 1997; Waleffe 2003). Earlier investigations of the prob-
lem have focused on the role of nonlinear instabilities in sub-
critical shear flows, based on Landau-like toy-models on the
one hand (e.g., Drazin & Reid 1981 and references therein),
and analysis of the linear stability of finite amplitude defects
in the flow profile on the other (Lerner & Knobloch 1988;
Dubrulle & Zahn 1991; Dubrulle 1993); unfortunately, such
analyzes yield little information on the existence and location
of the turbulent state in parameter space and on the turbu-
lent transport efficiency, unless further ad hoc assumptions are
made.

In any case, on the basis of the empirically observed sub-
critical transition in laboratory flows, it was suggested that a
similar process is relevant in accretion disks (Shakura et al.
1978), in spite of their very different prevailing physical condi-
tions. This suggestion was tested and challenged in a series of
numerical simulations performed by Balbus et al. (1996) and
Hawley et al. (1999), in the shearing sheet limit. Transition to
turbulence was not found in these simulations for Keplerian-
like flows. The simulations were performed with two different
finite difference codes (a PPM type code, and the ZEUS code),
up to a resolution of 2563. These two works concluded that a
stabilizing Coriolis force prevents the existence of turbulence

1 We thank Stéphane Le Dizes for bringing this point to our

attention.

in the simulated flows, except in the immediate vicinity of the
linear marginal stability limits.

This conclusion was in turn questioned by Richard &
Zahn (1999), on the basis of the Taylor-Couette experiments
performed by Wendt (1933) and Taylor (1936). These exper-
imental results display a subcritical transition to turbulence in
presence of a stabilizing Coriolis force. Also, new sets of exper-
iments have been carried out in order to bring the experimental
conditions closer to the ones prevailing in a Keplerian flow.
Namely, a Taylor-Couette apparatus was used in conditions
of radially decreasing angular velocity and radially increasing
specific angular momentum. Turbulence was again found for
high enough Reynolds numbers (Richard 2001; Richard et al.
2001) but the results are not unambiguous, as the potential role
of secondary flows induced by the boundary conditions in the
experiments, such as Ekmann’s circulation, is unclear, in spite
of the attention devoted to this point in the experiments. In any
case, a subcritical transition is also found in all experiments
of shear flows on which a linearly stabilizing Coriolis force is
superimposed (Longaretti & Dauchot 2005).

Longaretti (2002) has argued from a phenomenological
analysis that the lack of turbulence in the simulations per-
formed to date was due to a lack of resolution, as the Coriolis
force may increase the range of scales that need to be resolved
for a subcritical turbulent transition to show up. On the other
hand, on the basis of a newly developed Reynolds stress clo-
sure scheme (Ogilvie 2003), Garaud & Ogilvie (2005) find that
Keplerian flows may or may not be turbulent depending on
the parameters of the scheme. For their favored choice of pa-
rameters, unbounded Keplerian flows are not turbulent, on the
contrary to linearly stable, wall-bounded Taylor-Couette flows.

The recent astrophysical literature on the problem of sub-
critical transition has also focused on the concept of tran-
sient growth in Keplerian flows (Chagelishvili et al. 2003;
Tevzadze et al. 2003; Yecko 2004; Umurhan & Regev 2004;
Mukhopadhyay et al. 2005; Afshordi et al. 2005). Due to
the nonnormal character of the Navier-Stokes equation, lin-
ear modes can transiently be strongly amplified in shear flows,
although on the long run they must viscously decay. It has
been argued that this transient growth can be relevant to as-
trophysical disks in two different ways. First, 3D turbulence
(or an external forcing) can couple to large scale 2D struc-
tures; the (statistical) amplitude of these structures can be
large, under the combined action of this coupling, of tran-
sient growth and of viscous decay, and these 2D structures
may contribute to the overall transport in the disk (Ioannou &
Kakouris 2001). Secondly, a large transient growth has been
invoked in the bypass scenario of transition to turbulence,
which involves an interplay between nonnormality and nonlin-
earity (see, e.g., Grossman 2000; Brosa & Grossmann 1999).
Waleffe (1995) has emphasized the key role played by nonlin-
ear interactions in the context of the recently identified turbu-
lent self-sustaining process of non-rotating plane Couette flows
(Hamilton et al. 1995; Waleffe 1997). Even though transient
growth explains the strong modulations of the streamwise ve-
locity from relatively weak streamwise rolls involved in this
self-sustaining mechanism, the existence and properties of the
turbulent basin of attraction for the full nonlinear dynamics are
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apparently poorly constrained by the nonnormal linear problem
characteristics.

Our present understanding of the possible existence of a
dynamically significant subcritical turbulent transition in ac-
cretion disks is unsatisfying in several respects, calling for a
reinvestigation of the problem. On the one hand, the relevance
of the available laboratory experiments to accretion disk turbu-
lence is at best unclear, as will be shown in the course of the
present work (for a different opinion, see Hersant et al. 2005).
On the other hand, the absence of subcritical turbulence in the
shearing sheet local model of accretion disks used by Balbus
et al. (1996) and Hawley et al. (1999) may be an effect of var-
ious numerical limitations, namely, algorithm choice, limited
resolution, nature of the boundary conditions, imposed aspect
ratio and initial conditions of the simulations. Of these options,
only the first two have been partially addressed in these pre-
vious investigations, leading to questions concerning the “ef-
fective Reynolds number” of the performed simulations – an
ill-defined process-dependent concept, that we shall clarify in
the context of the present problem. Following the suggestion of
Longaretti (2002), the primary aim of the present work is to in-
vestigate in a more systematic way, through numerical simula-
tions of plane parallel, rotating shear flows, the effects of finite
resolution on the results. The effects of the other factors listed
above are also somewhat explored, but to a lesser extent. Both
cyclonic and anticyclonic rotation are considered; although cy-
clonic rotation is not relevant to accretion disks, it turns out
that cyclonic flows behave very differently from anticyclonic
ones, opening some interesting perspective into the nature of
the problem.

This paper is organized as follows. Section 2.1 collects the
background material relevant to the problem. First, the form of
the equations solved is provided, and the global energy budget
recalled, before discussing linear stability limits. The section is
concluded by a summary of the effect of a stabilizing rotation in
shear flows as characterized by the available laboratory experi-
ments. The next section presents the various codes used in this
work, and the numerical results obtained with them. Section 4
discusses various aspects of our numerical results, most notably
the role of resolution and boundary conditions on the numerical
side, the role of the Coriolis force, the underlying phenomeno-
logical picture, and the astrophysical implications, on the phys-
ical side. A summary is provided in Sect. 5, along with an
outlook on the question of turbulence in accretion disks.

2. Rotating plane shear flows: a summary

The present investigation is concerned with the nonlinear in-
stability of laminar flows characterized by a uniform shear, in
the presence of a uniform global rotation. The direction of the
flow is identified with the x axis (streamwise direction), and
the direction of the shear with the y axis (shearwise direction);
rotation is applied along the z axis (spanwise direction). The
laminar flow uL is invariant in the streamwise and spanwise di-
rections (in particular, the vertical stratification expected in a
real disk is ignored): uL = U(y)ex.

Such a flow can be used to numerically model either a local
portion of an accretion disk, or experiments on rotating plane
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Fig. 1. Sketch of the configuration of rotating plane shear flows.

Couette flows, depending on the nature of the applied boundary
condition in the shearwise direction (in practice, either rigid or
shearing sheet; see next section). The configuration is repre-
sented in Fig. 1.

2.1. Equations of motion

The most useful form of the Navier-Stokes equation, for our
present purpose, is obtained by separating the laminar flow uL

and the deviation from laminar w in the total velocity u in the
rotating frame, leading to

∂w

∂t
+ w · ∇w = S · y

∂w

∂x
+ (2Ω + S )wyex − 2Ωwxey

−
∇δπ

ρ
+ ν∆w, (1)

where the gradient terms balancing the laminar flow Coriolis
force has been subtracted out to form the effective generalized
pressure δπ (which therefore absorbs the equilibrium centrifu-
gal, gravitational and/or pressure force term, depending on the
considered equilibrium problem); Ω is the flow rotation veloc-
ity in an inertial frame, and S = −dU/dy is the shear. The
convention adopted here is that the sign of S is chosen to be
positive when the flow is cyclonic, i.e., when the contributions
of shear and rotation to the flow vorticity have the same sign.
With our choice of axes, this implies that S = −2S xy, where
S i j = 1/2(∂iuL, j + ∂ juL,i) is the usual deformation tensor. The
system is closed either with the usual continuity equation sup-
plemented by a polytropic equation of state, or, for simplicity,
through an incompressibility assumption (∇ · w = 0).

The relevant global time-scales of the problem are the shear
time-scale ts = |S

−1|, the viscous one tν = d2/ν (d is the gap
in the experiment, or the shearwise size of the shearing sheet
box), and the rotation time-scale related to the Coriolis force
tΩ = (2Ω)−1; they relate to the advection term, the viscous term,
and the Coriolis force term, respectively. Correlatively, the
flow is described by two dimensionless numbers, the Reynolds
number

Re = tν/ts = |S |d
2/ν, (2)

and the rotation number

RΩ = sgn(S )ts/tΩ = 2Ω/S . (3)

For Keplerian flows, RΩ = −4/3. More generally, if one as-
sumes that the large scale rotation of an astrophysical disk fol-
lows a power-law, Ω(r) ∝ r−q, one locally has RΩ = −2/q in
the disk.
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Note that our Reynolds number is defined on the outer
scales, and not on the turbulent ones, such as, e.g., the Taylor
microscale. Large values (∼104) of this number are involved
in the problem investigated here; the correlative numerical re-
quirements are discussed in Sect. 4.4.

2.2. Energy budget

As the global energy budget plays some role in the discussion
of the results, it is rederived here. In the following equations,
the bracket notation refers to a volume average of the brack-
eted quantity. The averaging volume is the simulation one, and
shearing-sheet boundary conditions are assumed in the deriva-
tion, for definiteness. For the kinetic energy in the streamwise
and shearwise directions, one finds:

∂

∂t

〈
w2

x

2

〉
= S (RΩ + 1) 〈wxwy〉

−

〈
wy

ρ

∂δπ

∂x

〉
+ ν〈wx∆wx〉, (4)

∂

∂t

〈
w2
y

2

〉
= −S RΩ〈 wxwy〉

−

〈
wy

ρ

∂δπ

∂y

〉
+ ν〈wy∆wy〉. (5)

Instead of the vertical equation, it is more instructive to write
down the total kinetic energy equation:

∂

∂t

〈
w2

2

〉
= S 〈wxwy〉 − ε, (6)

where

ε = ν
∑

i

〈(∇wi)
2〉 (7)

is the usual energy injection rate of turbulence cascade argu-
ments2. In this last equation the incompressibility condition
and the boundary conditions have been used in the reexpres-
sion of the pressure term, and an integration by part has been
performed on the viscous term (a constant kinematic viscosity ν
is assumed).

In statistical steady-state, Eq. (6) reduces to,

S 〈wxwy〉 = ε. (8)

As pointed out by Balbus et al. (1996), the fact that ε > 0
implies that in steady state, the shear rate and the Reynolds
stress responsible for radial transport have identical signs.
This result has a direct physical interpretation: the imposed
shear prevents the flow to be in global thermodynamic equilib-
rium. Nevertheless, the flow tries to restore this global equilib-
rium by radially transporting momentum through the turbulent
Reynolds stress from regions of larger momentum to regions of
lower momentum, consistently with Eq. (8).

2 Because the rate of energy transfer in scale is constant in a

Kolmogorov-like argument, the injection rate is directly related to the

small-scale dissipation rate.

Note finally that, in Eqs. (4) and (5), the pressure-velocity
correlation terms cannot be neglected, as they are of the order
of the cascade energy injection term ε. This is almost unavoid-
able, as pressure is the only force that can provide for the ac-
celeration of fluid particles in turbulent motions. As a matter
of fact, the energy budget of any particular velocity compo-
nent depends critically on the behavior of the velocity-pressure
correlations, which are notoriously difficult to model (Speziale
1991). Ignoring this term in the analysis of the energetics there-
fore leads to dubious or erroneous conclusions.

2.3. Linear stability limits

Surprisingly enough, the question of the linear stability limits
of the simple rotating shear flows considered here is not com-
pletely solved to date. Focusing for the time being on purely
streamwise-independent perturbations, instability with respect
to local perturbations follows when (Pedley 1969; Leblanc &
Cambon 1997; Sipp & Jacquin 2000)

RΩ(RΩ + 1) < 0, (9)

or, equivalently, −1 < RΩ < 0.
In plane Couette flows, it has been proven that R+

Ω
≡

0 is the correct cyclonic marginal stability limit for non
streamwise-invariant perturbations as well, at all Reynolds
numbers (Romanov 1973). No such generic proof exists at the
anticyclonic marginal stability limit (R−

Ω
≡ −1). However, var-

ious linear and nonlinear numerical investigations suggest that
this is indeed the case (Cambon et al. 1994; Komminaho et al.
1996; Bech & Andersson 1997). These results belong to plane
Couette flows with rigid boundary conditions in the shearwise
direction, but tend to prove that a local criterion captures the
correct stability limit, as observed, e.g., in the simulations of
Balbus et al. (1996) and Hawley et al. (1999).

The physics behind Eq. (9) can be captured by a displaced
particle argument (Tritton & Davies 1981; Tritton 1992). This
argument is reproduced in Appendix A for the reader’s conve-
nience. Note that Eq. (9) is identical to Rayleigh’s specific an-
gular momentum criterion for the centrifugal instability, as the
usual epicyclic frequency reads κ2 = S 2RΩ(1 + RΩ). However,
in the plane shear flow limit of cylindrical flows, the con-
cept of specific angular momentum used in the derivation of
Rayleigh’s criterion no longer has meaning, so that one must
follow a different route, as done here. Note also that, conse-
quently, the Rayleigh criterion for the centrifugal instability in
the inertial frame can also be understood from the action of the
Coriolis force in the rotating frame (a somewhat surprising, al-
though not new conclusion), as the displaced particle argument
of Appendix A is readily extended to cylindrical flows.

2.4. Subcritical transition in rotating plane Couette
flows: a summary of relevant experimental results

In the laboratory, non-rotating plane Couette flows undergo a
subcritical transition to turbulence at Re & 1500. The transi-
tion Reynolds number steeply increases if a stabilizing rotation
and/or a curvature is superimposed on the flow. The concep-
tually cleanest way to add rotation to a plane Couette flow is
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to place a plane Couette apparatus on a rotating table. Also,
by considering a Taylor-Couette apparatus with varying gap
width and independently rotating cylinders, one obtains a flow
in which both rotation and curvature effects can be studied, and
which reduces to a rotating plane Couette flow in the narrow
gap limit. For a more complete discussion of the distinction and
characterization of rotation and curvature in Taylor-Couette ex-
periments, and of the related experimental data, the reader is
referred to Longaretti & Dauchot (2005).

For the range of parameters studied to date in the exper-
iments, it turns out that rotation and curvature effects on the
transition Reynolds number are superposed in an mostly addi-
tive way, so that both plane Couette flows and Taylor-Couette
flows can in principle be used to characterize the effect of rota-
tion. Concerning cyclonic flows, the only directly relevant data
have been collected by Tillmark & Alfredsson (1996) with the
help of a plane Couette flow apparatus placed on a rotating ta-
ble. For anticyclonic flows, the only available experiments are
those of Richard and coworkers (Richard 2001; Richard et al.
2001), who used a Taylor-Couette apparatus. The range of ro-
tation number RΩ explored in these experiments is 0 to 0.1 for
cyclonic rotation, and −1.6 to −1 for anticyclonic rotation. The
data are shown in Fig. 2

The important point to note here is the steep dependence of
the transition Reynolds number with the “distance” to marginal
stability, with a typical slope |∆Rg|/|∆RΩ| ∼ 104−105.

3. Numerical codes, strategy, and results

In the present work, we are concerned with rotating, unstrat-
ified uniform shear flows. Periodic boundary conditions hold
in the direction of the flow (x axis) and the “vertical” direc-
tion (z axis), and either shearing sheet or rigid boundary con-
ditions are applied in the direction of the shear (y direction).
The vertical axis is also the axis of rotation of the flow. The
shearing sheet boundary conditions are described in detail by
Hawley et al. (1995). Shearing sheet flows thus modelled can
be viewed as a local approximation of disk flows, while the use
of mixed rigid-periodic boundary conditions is appropriate to
numerically represent the rotating plane Couette flows of lab-
oratory experiments, as routinely done in the fluid mechanics
community.

3.1. Numerical codes

Two different 3D codes have been written for the present work:
a finite difference compressible code, similar to ZEUS (Stone
& Norman 1992), but restricted to the Cartesian geometry, and
rigid-periodic or shearing sheet boundary conditions; and a
3D incompressible Fourier code, in Cartesian geometry, and
implementing only the shearing sheet boundary conditions. An
explicit kinematic viscosity term is added in both codes, upon
which the Reynolds number is defined. Both codes were paral-
lelized using the Message Passing Interface.

The shearing sheet boundary conditions induce some
changes with respect to a standard Fourier code. As a mat-
ter of fact, while we were developing this code, the work by
Umurhan & Regev (2004) appeared, which implements the
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The anticyclonic data are more difficult to collect, and consequently

noisier.

same technique. Therefore, our description of the required
changes will be brief, and we refer the reader to this recent
paper for details.

To get effective periodic boundary conditions on the 3 axes,
one needs to write Eq. (1) in the sheared frame defined by:

t′ = t (10)

x′ = x + S · y · t (11)

y′ = y (12)

z′ = z. (13)

In this shearing frame, Eq. (1) (supplemented by the incom-
pressibility condition) becomes:

∂w

∂t′
+ w · ∇̃w = −

∇̃δπ

ρ
− 2Ωwxey + (2Ω + S )wyex

+ν∆̃w (14)

∇̃ · w = 0 (15)

in which ∇̃ = ∂x′ex′ + (∂y′ − S t′∂x′)ey′ + ∂z′ez′ and ∆̃ = ∇̃ · ∇̃.
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Since the shearing box is a periodic box in the shearing
frame, this last formulation of the Navier-Stokes equation can
be written in 3D-Fourier Space. Defining:

µ = k − S tkxey, (16)

one finally obtains:

∂ŵ

∂t′
+ iµ · ŵ ⊗ w = −iµ

δ̂π

ρ
− 2Ω ŵxey + (2Ω + S )ŵyex

−νµ2
w (17)

µ · ŵ = 0. (18)

These are the equations actually used in our spectral code. The
nonlinear term is computed using the 2/3 dealiasing rule with a
pseudo-spectral method (see e.g. Peyret 2002 for a description
of this point) and each time-step is evaluated using a 4th or-
der Runge Kutta Scheme. One should note that a k-wave in
the sheared frame actually appears as a µ(t)-wave in the steady
frame. Then, as time goes on in the simulation, the k-grid de-
scribes higher spatial frequency in the steady frame and con-
sequently, the large scales are not computed anymore. Since
nonlinear coupling limits the shearing of any wave-number,
a remap procedure is periodically applied all along the sim-
ulation, and prevents to loose information on the large scale3

(Rogallo 1981). This kind of algorithm has been extensively
described by Umurhan & Regev (2004) using a 2D spectral
code and the reader should refer to this publication for techni-
cal details on the remap procedure.

The choice of these two codes was made first for purposes
of comparison with previous work, and secondly to allow us
to cross-check the potential limitations of one code against the
other; e.g., the shearing sheet boundary conditions and sheared
spatial basis Eq. (16) have their own limitations, as the sheared
basis forms a complete basis for shearing sheet boundary con-
ditions, but only for these conditions.

The three codes were tested in a variety of ways. The first
test was to reproduce the non-rotating plane Couette flow be-
havior computed by Hamilton et al. (1995). This was done both
with our finite difference code, and with David Clarke’s version
of ZEUS3D, for comparison purposes. We checked the non-
linear transition mechanism was well reproduced, with the cor-
responding Reynolds number and aspect ratio, and that the two
codes gave completely consistent results. Then, the shearing
sheet boundary conditions were tested using these two finite
difference codes and the Fourier code. We have verified that
mean turbulent quantities (e.g., mean energy, mean transport,
velocity maxima and minima) and critical Reynolds number
were statistically the same using the different codes, for differ-
ent rotation numbers, either cyclonic or anticyclonic. This con-
sistency holds over the 105−106 time steps of our simulations.

3.2. Initial conditions and numerical strategy

The experimental results recalled in Sect. 2.4 suggest that a
steep dependence of the transition Reynolds number with the
rotation number may be the cause of the difficulty to find such

3 We thank Achim Wirth for pointing out this reference to us.

a transition in the previously published shearing sheet numer-
ical simulations. Accordingly, one of the major aims of this
investigation is to quantify the effect of the simulation resolu-
tion on the determination of the transition Reynolds number as
a function of RΩ.

Now, one of the characteristic features of the subcritical
transition to turbulence is an observed spread in transition
Reynolds numbers, depending on the choice of initial condi-
tions, and a correlative large spread in turbulence life-times.
This has been documented both experimentally (Darbyshire &
Mullin 1995) and numerically (Faisst & Eckhardt 2004) in pipe
flows, and guides to some extent our choice of initial condi-
tions and our numerical procedure. Indeed, turbulent life-times
typically vary from fast decay (survival for less than one hun-
dred dynamical times) to long or indefinite survival (several
thousands of dynamical times, with a clear divergence at finite
Reynolds number) over several orders of magnitude of varia-
tion of the initial condition amplitude, but for less than 50%
of variations of Reynolds number (see Faisst & Eckhardt 2004,
Figs. 2 and 7).

It is reasonable to assume that this qualitative behavior
is generic. Consequently, we have chosen once and for all,
fixed, high amplitude initial conditions, to make our numeri-
cal runs more directly comparable to one another upon vari-
ations of Reynolds numbers. Furthermore, we consider that
turbulence is long-lived if it is not observed to decay for 100
or 200 shear times (depending on the runs). This choice is a
compromise between computational time constraints, and ac-
curacy in the determination of the transition Reynolds number
of indefinitely self-sustained turbulence. In practice, simula-
tions are performed in a cubic box (the impact of this choice is
discussed in the next section, to some extent). The flow is adi-
mensionalized with the only dimensional quantities introduced
in the problem: S and d, where d is the simulation box size
(or equivalently, by choosing |S | = 1 and d = 1). The initial
conditions used for all our simulation are a random 3D exci-
tation of the 10 largest Fourier modes, with rms fluctuations
in velocity of order unity in our chosen units. Other shapes of
initial conditions were tested such as white noise (all scales ex-
cited randomly) or introducing large scale vortices in various
directions with a small superimposed noise. This produces no
significant difference once the flow is relaxed (t >∼ 20 ts).

The numerical strategy adopted is then rather straightfor-
ward: choosing a code, a resolution, a boundary condition (for
the finite difference code) and a Reynolds number, at fixed ini-
tial conditions, the flow evolution is computed starting from the
marginal stability limit in rotation number RΩ and evolving the
rotation number by (small) fixed steps every 100 or 200 shear
times. According to the preceding discussion, this allows us to
reduce at maximum the number of runs and the run time needed
to observe systematic trends in the numerical results.

In this section, only shearing sheet boundary conditions are
used. We have also checked that the time required to dissi-
pate the turbulent energy of the flow assuming energy injec-
tion is stopped (deduced from the ε term in Eq. (6)) is smaller
than 100ts; this constraint is always satisfied by a large mar-
gin in all our runs, implying that the deviations from lami-
nar motion that we observe are self-sustained (i.e., we do not
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Fig. 3. Example of the time evolution of a 643 (Re = 12 000) cyclonic

flow run as computed by our Fourier code. The turbulent energy, trans-

port and dissipation rate are the quantities involved in Eq. (6). The

dissipation time follows from the turbulent energy and the dissipation

rate. The bottom panel displays the evolution of the rotation number

that is imposed in the course of the simulation.

observe them because their dissipation time exceeds the run
time). Actually, once turbulence is lost in our simulations, the
energy in the velocity fluctuations always decreases rather fast,
as can be checked in Fig. 3 for cyclonic flows. The same prop-
erty is found for anticyclonic flows, see Sect. 3.4.

We conclude this section on our choice of the Mach num-
ber (Ma = dS/cs) for our simulations with the compressible
Zeus-like code. The type of motions we are considering in these
simulations reach at most a small fraction of the boundaries rel-
ative velocity (normalized to unity in this work). We found that
a sound speed also normalized to unity was a good compromise
between limiting the effects of compressibility (which eventu-
ally makes the turbulence compressible and largely different
in character when the Mach number is too large), and the im-
pact of the sound speed on the CFL condition. Also, this value
mimics the real role of compressibility in a vertically stratified
accretion disk. Consequently, Ma = 1 is imposed in all our
compressible simulations.

3.3. Numerical results: cyclonic flows

On the cyclonic side, simulations are performed while main-
taining the rotation number RΩ constant during 100 shear
times; then the rotation number is increased by steps of 0.02,
starting from the marginal cyclonic point RΩ = 0. An ex-
ample global output of such a simulation is plotted in Fig. 3
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Fig. 4. Transition Reynolds number Rg as a function of the rotation

number RΩ, with different resolutions and codes for shearing-sheet

boundary conditions (cyclonic rotation). All points were obtained us-

ing our Fourier code except those labelled FD (finite difference) which

use our ZEUS-like code.

for Re = 12 000. The relaminarization point is easily found
since the transition between the turbulent to laminar state is
quite abrupt (at t = 1150 in Fig. 3). We define the last turbulent
point as the last rotation rate for which turbulence is sustained
for 100 ts. For our example simulation, we find that the last tur-
bulent point at Re = 12 000 and 643 resolution with our Fourier
code is RΩ = 0.2.

Using this kind of simulation, we plot the last turbulent
points in the (Re, RΩ) space, for different resolutions and/or
codes in Fig. 4. Turbulence is found on the cyclonic side at
least up to RΩ = 0.3, i.e. significantly away from the marginal
stability point.

Note that turbulence is maintained with certainty (with our
adopted criteria) at any given point, but, due to the sampling
made in the explored Reynolds number, turbulence may also
be maintained at a somewhat lower Reynolds number (i.e. just
below the last turbulent point in Fig. 3). This can be true down
to the previously tested Reynolds number, for which turbulence
is not maintained at the considered rotation rate. In conclusion,
the real transition Reynolds Rg curve in the (RΩ,Re) plane
should be found somewhat below (but not far from) the last
turbulent point curve determined here. This remark is more im-
portant for anticyclonic flows, for which precise quantitative
results are needed.

Except for a systematic shift between the results obtained
with the Fourier code and the ZEUS-like one, the results seem
to be independent of the resolution. The numerically minded
reader may ask how one can reach such high Reynolds numbers
with such relatively small resolutions. This point is addressed
in Sect. 4.4.

An important issue is to quantify transport in subcritical tur-
bulent flows. The phenomenological arguments of Longaretti
(2002) suggest that 〈vxvy〉 ∝ 1/Rg in subcritical flows, and that
the turbulent transport in a given flow with specified (Re,RΩ)
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for cyclonic rotation (normalized by S 2d2).

numbers depends only on RΩ through Rg (see Sect. 4.1)4.
Consequently, we have used all our simulations at a given RΩ
to obtain the least noisy evaluation of 〈vxvy〉. Then, with the
help of Fig. 3, one finds a transition Reynolds number Rg for
any given RΩ, which allows us to plot the mean turbulent trans-
port 〈vx vy〉 as a function of the transition Reynolds number in
Fig. 5. This was done only from the data of our Fourier code for
self-consistency, but using both the 323 and 643 resolution runs,
as they produced the same results, and as the use of a larger data
set improves the statistics. The resulting relation reads

〈vx vy〉 #
5.5

Rg − 1250
(S d)2. (19)

The presence of an additive constant in the denominator of this
expression is a clear indication of the influence of the linear
instability close to the marginal stability limit; indeed, transport
in the supercritical region is significantly enhanced with respect
to the subcritical region (see, e.g., Fig. 16 in Dubrulle et al.
2005a, and explanations therein). For large critical Reynolds
number (i.e., far enough from the marginal stability boundary,
e.g., Rg >∼ 15 000), 〈vx vy〉 # 5.5/Rg is a good approximation.

3.4. Numerical results: anticyclonic flows

The strategy adopted in simulations of anticyclonic flows is
similar to the cyclonic side. Starting at RΩ = −1.0, the ro-
tation number is decreased in steps of 0.004 and each step
lasts 200 shear times to allow for flow relaxation. A typical
run is shown in Fig. 6, computed with our 3D Fourier Code
at Re = 12 000. One should note that the flow fluctuations
have higher amplitudes on the anticyclonic side than on the
cyclonic side; this is why we have reduced the rotation number
steps and increased the relaxation time in anticyclonic runs.
Consistently, The last turbulent point is defined here as the last
rotation rate for which turbulence is sustained for 200ts. On the

4 The same result follows if one assumes that in the fully turbulent

state, the torque ∝Re2, as predicted in Kolmogorov turbulence, and

observed in experiments (see, e.g., Dubrulle et al. 2005a). The argu-

ment of Sect. 4.1 allows us to recover this result from more generic

physical principles.
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Fig. 6. Time evolution of a 643 Re = 12 000 anticyclonic flow as com-

puted by our Fourier code. Panel description is identical to Fig. 3.

example Fig. 6, we find the last turbulent point for Re = 12 000
at RΩ = −1.024.

As for cyclonic rotation, the last turbulent points for anti-
cyclonic rotation are plotted in Fig. 7 and the mean transport
in Fig. 8. Error bars are added in Fig. 7 to help assessing the
significance of the various fits performed, as they will be used
later on. On the lower bound of these bars, turbulence is not
maintained with certainty whereas the contrary is true for at

least 200 shear times at the upper bound. Therefore, the actual
transition Reynolds number is bracketed by the error bar.

Recalling that RΩ = −2/q with Ω(r) ∝ r−q and that
RΩ = −1 corresponds to a constant specific angular momen-
tum distribution in cylindrical flows, the largest rotation num-
ber reached here (RΩ = −1.032) corresponds to q = 1.94; this
is quite consistent with the results shown in Fig. 1 of Hawley
et al. (1999), except for the crucial fact that the resolution and
Reynolds number dependence are now quantified. The reason
why such high Reynolds numbers are accessible with our rela-
tively low resolutions is discussed in Sect. 4.4. For the time be-
ing, let us comment a bit further on the information encoded in
Fig. 7, which shows that Reynolds number and resolution are
different, albeit related control parameters. We will focus on
the Fourier code data for definiteness. Consider the 323 data,
for example. For |RΩ| < 1.016, the transition Reynolds num-
ber agrees with the one found at higher resolution. However,
increasing the Reynolds number above ∼6000 produces a loss
of turbulence at the same rotation number independently of the
Reynolds number, whereas this is not true at higher resolutions.
This implies that the physics is not faithfully represented at this
resolution for Re > 6000 and RΩ > 1.016.
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This is the most important point to note here: two different
regimes of transition from turbulent to laminar are displayed
in this figure. The first (corresponding to the various fitting
curves) is the correct, resolution independent and Reynolds de-
pendent transition. The second (apparent as the various ver-
tically aligned points at a given resolution) is an incorrect,
Reynolds independent and resolution limited transition. Note
that the points belonging to both this vertical line and the
laminar-turbulent line are still resolved, though, as shown in
Sect. 4.4.2. The meaning of the behavior displayed in Fig. 7 is
further discussed in Sect. 4.1, and its implications in Sects. 4.2
and 4.4.

Comparing Figs. 4 and 7, we remark that the dependence
of the transition Reynolds number Rg on the “distance” to
marginal stability in rotation number |RΩ − R±

Ω
| is consider-

ably stiffer on the anticyclonic side than on the cyclonic one.
This has important implications that will be discussed in the
next section. Conversely, the turbulent momentum transport is
very similar to the one found for the cyclonic side5, as shown
in Fig. 8

〈vx vy〉 $
5.5

Rg − 3000
(S d)2. (20)

The constant in the denominator differs from the one found
on the cyclonic side. This reflects the difference of transition
Reynolds number at the two marginal stability limits. For large
enough Reynolds number, one find 〈vx vy〉 $ 5.5/Rg, which

5 Figure 8 is noisier than its cyclonic counterpart. This is a con-

sequence of the larger turbulent fluctuations observed in anticyclonic

flows. Longer integrations time-scale would have been required to im-

prove the statistics.
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corresponds to the asymptotic relation found on the cyclonic
side (see Sect. 4.1 for a discussion of the possible origin of this
behavior). This indicates that this relation is very robust for
subcritical flows, far enough from the supercritical transition
limit.

4. Discussion

Our results are at variance with both the point of view advo-
cated by Balbus et al. (1996) and Hawley et al. (1999) (ab-
sence of subcritical turbulence), and Richard & Zahn (1999)
and Hersant et al. (2005) (efficient transport due to subcriti-
cal turbulence). This is further investigated in this section. We
shall first present some phenomenological background material
which helps to understand the physical origin and meaning of
the results presented in the previous section. Then, we shall re-
spectively discuss the implications of our results for Keplerian
flows (Sect. 4.2), the stabilizing role of the Coriolis force in
subcritical flows (Sect. 4.3), and the relation between Reynolds
number and resolution (Sect. 4.4); these last two items have
been highly controversial in the past decade. Section 4.4 also
discusses the relation of these results with the scale-invariance
argument of Balbus (2004). Finally the influence of the na-
ture of the adopted boundary conditions and aspect ratio on
our results is the object of Sect. 4.5, as well as their relation
to fluid dynamics experiments. Note also that the discussion
of the boundary conditions helps quantifying possible biases
introduced by the sheering sheet boundary conditions with re-
spect to actual disk physics. The reader interested only in the
astrophysical implications of our results may focus in Sect. 4.2.

4.1. Some aspects of subcritical turbulence
phenomenology

The phenomenology of subcritical turbulence has been dis-
cussed in Longaretti (2002) and Longaretti & Dauchot (2005).
Some directly relevant aspects for our present purpose are pre-
sented here (and clarified where needed).

Turbulent transport is often quantified in terms of a turbu-
lent viscosity. As this description has been criticized in the past,
a brief discussion of its use here might be useful. First, note
that, in scale-free systems such as the ones studied here (the
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only scale present being the simulation box size), one can al-
ways assume that

〈vxvy〉 = νtS , (21)

as this only amounts to defining a turbulent viscosity νt such
that this relation is satisfied. In any case, as the source of tur-
bulence is the shear, the Reynolds stress 〈vxvy〉 must be some
function of the shear S , which cancels when the shear cancels.

Now, νt has the dimension of a length times a velocity, so
that one must therefore have, in our simulations,

νt = αS d2, (22)

as S d and d are the only dimensional quantities with the right
dimensionality introduced in the problem.

α is a Shakura-Sunyaev-like parameter. It is a dimension-
less quantity, and can therefore only depend on the dimension-
less quantities6 characterizing the problem at hand, namely the
Reynolds number Re and the rotation number RΩ (i.e., the shear
dependence of α can only appear through the ratios of the shear
time scale to the viscous and the rotation time scales):

α ≡ α(Re,RΩ). (23)

The results of Sect. 3 suggest that, quite remarkably,α depends
only on RΩ through the transition Reynolds Rg, and not (or
little) on Re, in subcritical flows. The origin of this behavior
can be understood in the following way (Longaretti 2002).

A sheared flow is out of global thermodynamical equilib-
rium, and tries to restore this equilibrium by transporting mo-
mentum across the shear. A subcritical flow has only two means
at its disposal to achieve this purpose: laminar and turbulent
transport. It will tend to choose the most efficient one under any
given set of conditions7, i.e. at given Re and RΩ. The subcriti-
cal turbulent transport will exceed the laminar one when νt >∼ ν.
Right at the laminar-turbulent threshold, Re ∼ Rg and νt ∼ ν.
This implies that

α ∼
ν

S d2
∼

1

Rg
· (24)

Now, what does happen at Reynolds numbers Re larger than
the transition Reynolds number Rg? To answer this question, it
is useful to have in mind some idealized, qualitative picture of
the situation in wave-number space. Such a picture is proposed
in Fig. 9, and constitutes a reasonable working hypothesis. It
is reasonably well-supported by our current knowledge of the
plane Couette flow turbulent self-sustaining process and of in-
ertial spectra, as well as by the spectral analysis of some of our
simulations presented and discussed in Sect. 4.4.2.

In this picture, the large scales are occupied by the self-
sustaining mechanism. All scales in this domain are expected to
be coherent in phase, and interactions between large and small

6 Actually, in principle, α depends also on the aspect ratio of the

simulation, and on the nature of the boundary conditions. As these are

not varied in the results discussed on the basis of the phenomenology

described here, this dependency is ignored for simplicity.
7 Note that this does not imply that the momentum transport is ab-

solutely maximized.
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scales occur both ways8. The intermediate range is the inertial
range of turbulence; scales have no phase coherence, energy
cascades to smaller scales at a constant rate, provided by the
self-sustaining mechanism (as part of the mode coupling tak-
ing place in the self-sustaining mechanism range of scales oc-
curs with the inertial range). The smallest range represents the
viscous dissipation scales. The existence of the self-sustaining
process scales, their properties, and their influence on the iner-
tial range (energy input and anisotropy) is the distinctive fea-
ture of shear turbulence with respect to the more commonly
known and studied forced isotropic turbulence.

In such a picture, increasing the Reynolds number almost
exclusively results in an increase of the inertial range, which is
essentially vanishing at the transition Reynolds number. This
should have little effect on the turbulent transport (whereas, on
the contrary, the laminar transport becomes smaller and smaller
when increasing the Reynolds number).

Indeed, we have first checked that this is case in non-
rotating Couette plane flows, where the self-sustaining mech-
anism is identified (Hamilton et al. 1995): the transport is al-
most completely determined dominated by the mechanism rolls
and streaks. Furthermore, in our simulations, we have com-
puted the contribution of each length scale to the total trans-
port 〈vxvy〉. First one should note that in Fourier space (in 1D
for simplicity):

〈vxvy〉 =

N−1∑

n=0

ṽx(kn)ṽ∗y(kn). (25)

8 This is the case in particular for the non-rotating plane Couette

self-sustaining mechanism (Waleffe 1997).
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99% of the transport comes from kx < 10 scales. From a 1283 simula-

tion, Re = 20 000, RΩ = −1.020.

Therefore, the contribution to mean transport of the wave-

length kn is found to be 2"
(
ṽx(kn)ṽ∗y(kn)

)
, since kn and kN−n rep-

resents the same physical wavenumber. This simple result can
be used in 3D by averaging the transport over 2 directions (in
physical space) and by computing the Fourier transform in the
remaining direction; this procedure is sufficient for our purpose
here. The resulting cumulative Fourier sum, starting from n = 0
is illustrated on an example in Fig. 10 to quantify which scales
dominate the transport. In this example, the resulting spectral
analysis is plotted in the x direction for a 1283 anticyclonic
flow with RΩ = −1.024 and Re = 20 000, showing that more
than 99% of the transport comes from scales larger than 1/10
of the box size; this range corresponds to the length-scales of
the self-sustaining process (see Sect. 4.4.2). Similar results are
found for spectral analyzes in the y and z directions, consis-
tently with the picture discussed here. This is expected anyway
if the inertial spectrum is Kolmogorovian, as confirmed from
the spectral analysis of Sect. 4.4.29 .

There are two loose ends in this discussion. First, hysteresis
is usually experimentally observed in subcritical transitions to
turbulence: the measured transition Reynolds number is higher
when moving “up” from the laminar to turbulent states than
when moving “down” from the turbulent to laminar ones. This
suggests that the laminar-turbulent boundary is separated by
some sort of barrier in the appropriate phase-space (defined,
e.g., by the amplitudes and phases of the Fourier modes). This
(along with the fact that the arguments developed here apply
only in order of magnitude) may well explain the existence of
the constant of order 5 that one finds in Eqs. (19) and (20) with
respect to Eq. (24). Secondly, the arguments presented here
ignore the existence of marginal stability thresholds. This, as
pointed out in Sects. 3.3 and 3.4, may explain the presence of
the constant at the denominator of these relations, as the equiv-
alent global subcritical transition Reynolds number that one

9 The true nature of the inertial spectrum might be affected by the

anisotropy generated by the the shear and the Coriolis force, but these

anisotropies must become negligible at small scale, due to the shorter

and shorter eddy turnover time.

can define in the supercritical regime is orders of magnitude
smaller than in the subcritical regime.

To conclude, let us point out the relation of this picture with
the numerical results presented in Fig. 7. The fact that higher
resolutions are required to faithfully represent the physics at
higher rotation numbers indicates that the ratio d/lM increases
with rotation number. Indeed, if the resolution is too low, so
that the relative scale lM/d is not resolved, the energy transfer
loop represented in Fig. 9 cannot take place, and turbulence
is not self-sustained. Furthermore, at the transition Reynolds
number, the inertial spectrum is nearly inexistent, as pointed
out above, and lM ∼ ld. Consequently, the most critical scale
ratio in this problem is expected not to be the Kolmogorov one,
but the self-sustaining mechanism one (d/lM).

4.2. Implications for Keplerian flows

Actual disks are vertically stratified, whereas stratification is ig-
nored in our experiments. Stratification provides us with a local
macroscopic scale (the disk scale height H). With appropriate
provisos relating to the possible stabilizing or destabilizing role
of stratification10, one can tentatively identify this scale height
with our simulation box size: H = d. This assumption is made
throughout this section. In the same way, the Shakura-Sunyaev
αS S parameter is defined such that νt = αS S csH % αS SΩH2.
Equation (22) then implies that αS S = 2α/|RΩ| % α (the last
equality holds within a factor of order unity for the rotation
number range of interest in this work).

Using the numerical results shown in Figs. 7 and 8, one
can deduce a few properties of Keplerian flow subcritical shear
turbulence, based on various conservative extrapolations of our
numerical data. First, the transition Reynolds number Rg de-
pendence on the rotation number RΩ is well-fitted by a power
or an exponential law. Using these laws, one can get a first set
of estimates of the transition Reynolds number for Keplerian-
like flows (RΩ = −4/3): Rg = 1.1 × 1010 and Rg = 1.3 × 1026,
respectively. The last estimate leads to the absence of subcrit-
ical turbulence in accretion disks whereas the first one allows
for its existence11. Secondly, let us note that, for both cyclonic-
ity, the Coriolis force induces a steeper and steeper increase of
the transition Reynolds number when moving away from the
marginal stability boundary. This suggests that one can find a
lower bound for Rg by linearly extrapolating the power law
fit beyond the last known point (RΩ = −1.032). One find this

10 If stratification is destabilizing, the momentum transport induced

by the resulting convective motions is in the wrong direction, as re-

called in the introduction, and must be counterbalanced by another

process; ignoring stratification in this case therefore makes life eas-

ier for this other process (here, subcritical turbulence). If stratification

is stabilizing, this also most likely results in an increased difficulty

in finding the transition to turbulence, and a related increase in the

transition Reynolds number. These arguments suggest that ignoring

the dynamical stratification altogether maximizes the overall outwards

transport in our problem.
11 We assume that accretion disk Reynolds numbers lie between 1010

and 1015 for definiteness. The Reynolds number definition used in this

evaluation is Re = S H2/ν where H is the local disk scale height,

consistently with the H = d identification made earlier.
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Table 1. Extrapolated transition Reynolds numbers, values of α, and

required simulations resolution, for Keplerian flows, under various as-

sumptions (see text for details).

exponential power-law cyclonic linear

Rg 1.3 × 1026 1.1 × 108 2 × 107 1.8 × 106

α n/a 5 × 10−10 2.6 × 10−7 3.1 × 10−6

(d/δ)3 n/a 70003 30003 9003

way Rgmin = 1.8×106. As a final hypothesis, one may envision
that the Rg(RΩ) relation would be more or less symmetric with
respect to RΩ = 0 if there were no supercritical domain. This
would explain why the actual relation of Fig. 7 is so steep: in
this picture, the system tries to reach back as fast as possible
the high values of transition Reynolds number expected from
this hypothetical symmetry, after which the Reynolds depen-
dence with rotation number would be much less steep. Under
this assumption the expected transition Reynolds number for
Keplerian flows would be Rg = 2. × 107 (a power-law fit of the
cyclonic data has been used in this extrapolation).

This information is summarized in Table 1, along with the
corresponding values of α, obtained from the asymptotic rela-
tion α = 〈vxvy〉 = 5.5/Rg found for cyclonic and anticyclonic
flows in the previous section. The last line shows the resolution
required to successfully simulate Keplerian flow turbulence, for
the various Reynolds numbers (see Sect. 4.4.1). One sees that
even the most optimistic α bound (αmax = 3.1×10−6), obtained
with the linear extrapolation, is substantially smaller than the
values required in astrophysical accretion disks (as summa-
rized, e.g., in Papaloizou & Lin 1995). Note finally that, even
without any extrapolation, our results exclude subcritical tur-
bulent transport at the α % 3 × 10−4 level.

4.3. Role of the Coriolis force in uniform shear flows

Two different but related issues have been raised in the liter-
ature concerning the role of the Coriolis force in subcritical
systems.

First, for linearly stable flows, Balbus et al. (1996) point
out that the Coriolis force plays a conflicting role in Eqs. (4)
and (5). More precisely, they make the following point: as
S 〈vxvy〉 > 0 for turbulence to exist (see Sect. 2.2), the terms in
which the shear S has been factored out in these equations have
opposite signs for linearly stable flows, while they have the
same sign for linearly unstable flows (note that this is true inde-
pendently of the flow cyclonicity). They conclude from this that
a stabilizing rotation prevents turbulence to show up in subcrit-
ical shear flows, except possibly in the vicinity of marginal sta-
bility. Somewhat relatedly, the recent Reynolds stress-closure
model of Ogilvie (2003) and Garaud & Ogilvie (2005) predicts
relaminarization for large enough deviations from the marginal
stability limit. In particular, for the authors’ standard choice
of parameters, it predicts relaminarization for RΩ ∼ 0.2 for
cyclonic rotation. However, as can be seen in Fig. 4, both the
Balbus et al. (1996) argument and the Garaud & Ogilvie (2005)
result conflict with our simulations: subcritical turbulence is

maintained away from marginal stability on the cyclonic side,
at least up to RΩ % 0.3. Note that we could have pushed the
search for transition to turbulence beyond what is shown on
this graph, especially by using higher resolutions, but did not
do it due to computer resources limitations. As discussed in the
next subsection, the absence of turbulence in the Keplerian flow
simulations of Balbus et al. (1996) and Hawley et al. (1999) is
a problem of resolution.

The second issue relates to the asymmetry between cy-
clonic and anticyclonic rotation. The stress-closure model just
mentioned depends on the rotation number only through the
combination RΩ(RΩ + 1) which implies a symmetry with re-
spect to RΩ = −1/2. This symmetry is clearly violated by our
numerical results (compare Figs. 4 and 7), a point which re-
quires some comments.

First, note that the linearized Navier-Stokes Eq. (1) exhibits
this symmetry for perturbations with vanishing pressure vari-
ation (δπ = 0). In this case, the linearized equation can be
written:

∂w

∂t
= S · y

∂w

∂x
+ S ·

(
(RΩ + 1)wyex − RΩwxey

)
+ ν∆w. (26)

The cyclonic-anticyclonic symmetry appears when exchanging
the x and y directions. Indeed, upon the following change of
variables:

R′Ω = −RΩ − 1,

w′x = wy, e′x = ey,

w′y = wx, e
′
y = ex,

w′z = wz, e′z = ez,

so that

w
′ = w′xe′x + w

′
ye
′
y + w

′
ze
′
z

= w,

the form of Eq. (26) should be invariant, which is indeed the
case:

∂w′

∂t
= S · y

∂w′

∂x
+ S ·

(
(R′Ω + 1)w′ye

′
x − R′Ωw

′
xey

)
+ ν∆w′. (27)

This symmetry can also be extended to compressible motions
by adding δπ′(x, y, z) = δπ(y, x, z) to the list of change of
variables.

Because the perturbations defining the linear stability limit
also exhibit this symmetry (Appendix A), it has often been as-
sumed in closure-stress models in the past. However, this is
not a symmetry of the full Navier-Stokes equation (Speziale
& Mhuiris 1989; Speziale 1991; Salhi & Cambon 1997), nor
of the ∇ · w = 0 equation). This is also apparent in a direct
inspection of the structure of simulated turbulent flows. The
RΩ = 0, wall-bounded turbulent flows contain large stream-
wise rolls living for about a hundred shear times (Hamilton
et al. 1995). We have also found rolls more or less aligned in
the streamwise direction in our RΩ = 0 shearing sheet simu-
lations, although we did not try to precisely quantify their sur-
vival time. Furthermore, at the anticyclonic marginal stability
limit (RΩ = −1), we did observe sheared shearwise rolls (i.e.
rolls in y direction) in our simulations, as one might expect
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from the symmetry of the linearized Navier-Stokes equation.
The anticyclonic roll survival time is observed to be rather short
compared to their cyclonic counterpart, as they are tilted by the
shear and loose their coherence in a few shear times at most.
This roll lifetime is the main difference we found between the
cyclonic and anticyclonic side. This is related to the fact that a
streamwise roll does not reduce the shear on the anticyclonic
subcritical domain (in opposition to the cyclonic one).

In any case, we have found turbulence away from the
marginal stability limit in cyclonic flows, and the symmetry
with respect to RΩ = −1/2 is violated both in our simulations,
and in supercritically rotating shear flow turbulence (see, e.g.,
Salhi & Cambon 1997 and references therein). This make the
predictions of the stress-closure model of Ogilvie (2003) and
Garaud & Ogilvie (2005) unreliable in both subcritical and su-
percritical flows.

4.4. Resolution, effective Reynolds number and scale
invariance

The results of Sects. 3.3 and 3.4 involve fairly high Reynolds
numbers, and one might ask if our simulations are resolved
enough in these regimes. This question has a priori two dif-
ferent aspects, as one can guess from Fig. 9: resolving the self-
sustaining process smallest relative scale d/lM, and resolving
the relative dissipation scale d/ld.

For the problem considered in this paper, resolving the first
scale is a sine qua non condition: if it is not satisfied, turbulence
does not show up, independently of the simulation Reynolds
number, because the required scale coupling shown in Fig. 9
for the self-sustaining process to exist cannot take place. This
shows up in Fig. 7 as the vertical transition limit from turbulent
to laminar that we obtained for any given resolution, for large
enough Reynolds numbers.

Resolving the dissipation scale is important to ascertain that
direct numerical simulations such as the ones performed here
are not biased by (the presence or absence of) numerical dis-
sipation, and this issue is often raised in the fluid mechanics
literature. For the time being, we note that, at the transition
Reynolds number, the inertial domain should be non-existent or
extremely reduced, so that lM " ld and both resolution require-
ments should be directly related (this point, used in Sect. 4.4.1
is justified in Sect. 4.4.2). We can therefore consider that the
“effective Reynolds number” Reeff of our simulations is the
largest transition Reynolds number Rg correctly determined at
a given resolution12, as discussed in Sect. 3.4.

Note that this effective Reynolds number is problem-
dependent: the self-sustaining process qualitative and quanti-
tative characteristics both depend on the considered problem;
furthermore, in simulations of isotropic turbulence, the self-
sustaining process is absent, and replaced by a forced ampli-
tude of the largest Fourier modes, so that the effective Reynolds
number in this case is the one related to the dissipation scale.

12 With all the provisos discussed in Sect. 3.2 about the role of the

choice of the initial conditions and turbulence minimal survival life-

time.

Let us now examine the two requirements mentioned above
in more detail.

4.4.1. Resolving the self-sustaining process

First, we would like to qualitatively comment on the difference
of resolution requirements between cyclonic and anticyclonic
flows.

As discussed in Sect. 4.5, the nature of the shearwise
boundary condition has apparently only a small influence
on the results; this is exemplified by the similar transition
Reynolds numbers found in our simulations and in experi-
ments on rotating shear flows (see Fig. 14). This suggests that
at least some of the characteristics of the self-sustaining pro-
cess of non-rotating plane Couette flows are relevant here. At
the cyclonic marginal stability limit, this self-sustaining pro-
cess has a time-scale tSSP ∼ 100S −1 (Hamilton et al. 1995;
Waleffe 1997). The requirement that, at the transition Reynolds
number, the viscous time scale at scale lM exceeds tSSP reads
l2M/ν

>∼ 100S −1, i.e., lM/d <∼ (100/Rg)1/2 ∼ 1/4 for Rg ∼
1500 (Longaretti & Dauchot 2005). This probably explains
why the resolution requirement is so low on the cyclonic side.
Conversely, we have mentioned at the end of the previous sub-
section that rolls (which are an apparently ubiquitous ingre-
dient in subcritical turbulence) do not survive more than a
few shear times in anticyclonic flows. Therefore, the anticy-
clonic self-sustaining process time-scale cannot exceed a few
shear times as well, whatever its nature. The same reasoning
as the one exposed above leads to lM/d <∼ a few (1/Rg)1/2 ∼
a few ×1/70, an already much more demanding constraint. It
is obviously related to the larger transition Reynolds number
found at the anticyclonic marginal stability, compared to the
cyclonic one.

As mentioned several times already, the self-sustaining pro-
cess is identified and understood only at the cyclonic marginal
stability limit in wall-bounded Couette flows. Consequently, it
is difficult to explain why the resolution demand grows so much
faster with rotation number “distance” to marginal stability for
anticyclonic flows than for cyclonic ones. However, we spec-
ulate that this is connected to the fact the rotation time scale
is only a fraction of S −1 for cyclonic flows, whereas it always
exceeds S −1 for anticyclonic ones.

Next, let us try to quantify the resolution that would be
needed to successfully simulate Keplerian flows. The phe-
nomenology of subcritical turbulence developed by Longaretti
(2002) predicts that d/lM ∼ Rg1/2 and 〈vxvy〉 ∝ 1/Rg. This phe-
nomenology implicitly assumes that the relevant time-scale of
the self-sustaining process is ∼S −1, so that it would need to be
modified to be applied to cyclonic flows, but it should be ade-
quate for anticyclonic ones, with appropriate modifications. In
particular, we have already pointed out in Sect. 4.1 that the last
relation needs to be amended into 〈vxvy〉 ∝ 1/(Rg − Rc) with
Rc " 3000 on the anticyclonic side. This suggests that

δ

d
"

γ

(Rg − Rc)1/2
(28)

is the appropriately generalized scale relation (δ being the
smallest scale accessible to the simulation, i.e., the resolution).
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Table 2. Resolution, effective Reynolds number and γ factor for the

Fourier code on the anticyclonic side.

(d/δ)3 Reeff γ

323 6000 1.71

643 12 000 1.48

1283 38 000 1.46

Table 2 gives the values of γ and Reeff for the three different
resolutions of our anticyclonic simulations.

Although the statistics is a little poor to draw firm conclu-
sions, it appears that γ is nearly constant compared to the vari-
ations in both resolution and transition Reynolds number, and
our simulations are therefore consistent with Eq. (28). The res-
olution needed to simulate Keplerian flows has been computed
based on the estimate Eq. (28), with γ = 1.5 (the Rc correction
has little influence on these estimates). The results are shown
in Table 1. For comparison purposes, note that the largest tur-
bulence simulation ever performed was 40003, but was not run
for hundreds or thousands of dynamical times. Although the
results gathered here are probably only indicative, as they are
based on guess work, they strongly suggest that simulating sub-
critical turbulence in Keplerian flows is beyond present day
computer capabilities, and support the idea that the subcriti-
cal Keplerian flows simulations performed to date were limited
by numerical resolution, as suggested by Longaretti (2002).

4.4.2. Resolving the dissipation scale

In statistically steady turbulence, the dissipation scale can be
defined from the balance between input and dissipation de-
scribed by Eq. (8). The energy input is provided by S 〈vxvy〉.
The Fourier analysis of this quantity is shown in Fig. 10, and
is dominated by the large scales. Conversely, the Fourier con-
tent of ε, Eq. (7), is dominated by the small scales (large k),
comparable to the dissipation scale, as illustrated below.

Resolving the dissipation scale is important with Fourier
codes in order to prevent energy accumulation at the smallest
scales, which may bias the results, or lead to code crash13.

The general definition of the dissipation wavelength kd fol-
lows from the evaluation of Eq. (7) in Fourier space:

ε = 2ν

∫ kd

0

k2E(k)dk (29)

where it is assumed that E(k) is cut-off at kd, either abruptly,
or through some modelling of the dissipation range (see e.g.
Lesieur 1990).

In simulations of homogeneous and isotropic turbulence,
the energy input is imposed from the outside: the amplitude of
the largest Fourier mode is held fixed, and Fig. 9 reduces to
the inertial and dissipation range. In this context, the inertial
spectrum reduces to the Kolmogorov spectrum given by:

EK(k) = CKε
2/3k−5/3, (30)

13 One may also include an hyper-viscosity term to prevent code

crash, but this turned out not to be necessary.

where the Kolmogorov constant CK $ 1. Cutting off this spec-
trum at wavelength kd and injecting it in the definition Eq. (29)
leads to the well-known expression of the Kolmogorov wave
number, kK = (ε/ν3)1/4. The related Kolmogorov scale (inverse
of the wave number) is a largely used estimate of the dissipa-
tion scale.

In the fluid mechanics community one often requires that
the Kolmogorov scale be resolved, even if the considered turbu-
lence is not isotropic and homogeneous, as, e.g., in shear flow
turbulence (see, e.g., Pumir 1996). However, in our simula-
tions, the observed spectrum is substantially different from the
Kolmogorov one, especially at the transition Reynolds num-
ber (see top panel of Fig. 12). Indeed, at the turbulent-laminar
transition, one does not expect nor observe the presence of an
inertial domain in the spectrum. One may therefore ask what
relation the Kolmogorov scale bears to the dissipation scale of
the problem.

Consider, e.g., the 323 and 643 energy spectra obtained
at a Reynolds number Re = 6000 and a rotation number
set to −1.016. These spectra are shown on the top panel of
Fig. 12. The concordance of the spectra at both 323 and 643 res-
olutions indicates that the dissipation scale in the 323 sim-
ulation is resolved (this is consistent with the shape of the
spectrum at the smallest 323 resolved scales, much steeper than
Kolmogorov). It appears that the largest distance to marginal
stability |RΩ + 1| reliably accessible at a given resolution on the
laminar-turbulent transition (as checked by higher resolution
simulations) corresponds to the various vertical line of transi-
tion displayed in Fig. 7 for this resolution. In other words, the
Re = 6000, RΩ = −1.016 point at 322, and the Re = 12 000,
RΩ = −1.024 at 643, are resolved. This feature makes us con-
fident that the transition point determined at 1283 is the correct
one, although we did not cross-check it at 2563, due to the lim-
itations in the available computational resources.

We have thus determined the largest transition Reynolds
number where the dissipation scale is confidently resolved in
these anticyclonic runs at the various resolutions we have used
(323, 643 and 1283). In other words, we know the effective
dissipation scale of these simulations, as it must be compara-
ble to the largest wave number available in the simulation14:
kd $ 31/2πN/d, where N is the resolution. Furthermore, we
can compute the Kolmogorov wave number kK for these runs,
as ν = Re/S d2, and as ε follows from Eq. (8) and the transport
(e.g., with the help of the transport/transition-Reynolds-number
correlation displayed in Fig. 8). The resulting ratio R = kd/kK

is given in Table 3.

Although the values of the ratio R quoted in Table 3 are
of order unity, a systematic trend seems to appear, indicating
that resolving the Kolmogorov wave number is possibly not
the relevant concept at the transition Reynolds number, as it is
not stringent enough; nevertheless, the required resolution de-
rived from the Kolmogorov wave number is apparently semi-
quantitatively correct, at least for the rotation numbers explored

14 This expression corrects a misprint in Pumir (1996) for the diag-

onal of a cube in Fourier space; although this largest wave number is

resolved only in discrete directions, this definition is adopted here for

ease of comparison with this earlier work.
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Table 3. Resolution, dissipation to Kolmogorov wave number ratio,

and corresponding transition Reynolds number (see text for details).

N R = kd/kK Rg

32 1.23 6000

64 1.73 12 000

128 2.66 35 000
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Fig. 11. Cumulative mean dissipation spectrum for a 643 simulation

at Re = 6000 for RΩ = −1.016.

here. Of course when going to Reynolds numbers well in ex-
cess of Rg at a given RΩ, the Kolmogorov wave number should
always give the right estimate of the dissipation scale, as the
inertial range becomes more and more prominent in the overall
spectrum.

To conclude this aspect of the discussion, we note that
both the non-Kolmogorovian shape of the spectrum at transi-
tion and the relatively small values of ε at the various transition
Reynolds numbers used here, most probably combine in the
end to explain why we can reach rather large Reynolds num-
bers at rather moderate resolutions.

In order to have a better grasp on which scales contribute
most to the dissipation, we have computed a quantity, τd(k),
defined by

τd(k) = 2ν

∫ k

−k

dkx

∫ k

−k

dky

∫ k

−k

dkz

(
k2

x + k2
y + k2

z

)
E(kx, ky, kz). (31)

Comparing with Eq. (29), it appears that τd(k) represents the
fraction of dissipation due to scales |kx| < k, |ky| < k and |kz| <
k. This quantity is plotted in Fig. 11 with the 643 simulation
spectrum. It appears that more than 95% of the total dissipation
is due to k < 1/2kmax (i.e., the 323 resolution). Also, comparing
Fig. 11 with the top panel of Fig. 12 indicates that most of
the dissipation comes from the part of the spectrum which is
steeper than the Kolmogorov spectrum, as one would expect.

It is also instructive to examine the spectral behavior at
Reynolds number larger than the transition Reynolds number,
as shown in Fig. 12.

This figure displays energy spectra of the velocity devi-
ation from the laminar flow. The rotation number is fixed
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Fig. 12. Energy spectra (of the velocity deviation from the laminar

flow), for two different resolutions (322 and 643). The rotation number

is RΩ = −1.016 in all cases. Top panel: Re = 6000. Middle panel: Re =

12000. Bottom panel: Re = 20 000. At this resolution only the top

panel simulations are resolved, as expected. See text for discussion.

at RΩ = −1.016 for all spectra, and they have been averaged
over a 200 shear time period to reduce the noise. From top to
bottom, the Reynolds number is 6000, 12 000 and 20 000 re-
spectively. The 323 simulations are resolved only in the top
panel, while the 643 simulations should be resolved in the top
two panels. Comparing the second panel with the first reveals a
couple of interesting points:

– The 643 simulation shows an extension of the spectrum,
compatible with a small inertial range (this is difficult to
ascertain because of the remaining noise in the simulation),
while still resolving at least the top of the dissipation range,
but marginally so.
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– The 323 simulation begins to significantly deviate from the
643 simulation, although the trend is similar.

The third panel also displays a fairly relevant piece of informa-
tion. The 643 simulation shows both the self-sustaining mecha-
nism scales and the inertial spectra. However, the dissipation
scale does not seem to be resolved. This is not unexpected,
since increasing the Reynolds number necessarily increases
the inertial spectrum, and therefore decreases the dissipation
scale. Apparently, the dissipation scale is probably not far off
the resolved scales, so that the simulation nevertheless does
not noticeably deviate from the expected behavior. But note
that the 323 simulation is clearly strongly unresolved, with en-
ergy accumulating in the small scales in order for a statisti-
cally steady equilibrium to be achieved: indeed, as this simula-
tion resolves the self-sustaining mechanism scale, turbulence is
present; however, as the smallest resolved scale is significantly
larger than the dissipation scale, the spectrum must be strongly
deformed to achieve a dissipation which is consistent with the
energy input due to the turbulence self-sustaining mechanism.

These simulations illustrate that if the dissipation scale is
not resolved, the simulated flow does not necessarily relami-
narize, but the deformation of both the amplitude and shape of
the spectrum most likely results in, e.g., unreliable estimates
of the turbulent transport. In particular, the reliability of finite
difference simulations where no viscous term is explicitly in-
cluded in the code is unclear15.

On the other hand, this point is related to the fact that
the numerical dissipation in a Fourier code is extremely weak,
so that the deformation of the spectrum may be quite large.
To compute the numerical dissipation explicitly, we have esti-
mated its effect on the turbulent energy budget.

15 We did not further investigate this question here.

We plot an example of such an energy budget in Fig. 13,
where all the terms in Eq. (6) are evaluated, so that the remain-
ing difference measures the code dissipation. One should note
that these plots are integrated over 2 shear times, so that they
include the numerical dissipation due to the desaliazing pro-
cedure (done at each time loop) and losses from the remap-
ping procedure (done each shear time). The presented result is
generic: for all our simulations, numerical dissipation is found
to be at most a few percent of the total dissipation.

In summary, we have tried as much as possible to ensure
that our determination of the transition Reynolds number and
turbulent transport do not suffer from lack of resolution of
the dissipation scale. Note also that the results of the Fourier
and finite difference codes are consistent with each other. This
makes us confident that our simulations faithfully represent the
relevant physics, down to and including the dissipation scale,
within the relevant (Re,RΩ) domain determined at each resolu-
tion in Fig. 7.

4.4.3. Shearing sheet simulations and scale
invariance

Recently, Balbus (2004) has argued that the scale invariance
of the inviscid form of the Navier-Stokes equation used here
makes any small scale solution exist at large scales as well.
This argument seems to imply that simulations of the kind per-
formed here should not be resolution limited. However, neither
the simulations of Balbus et al. (1996), Hawley et al. (1999),
the ones performed here, nor a real disk, are scale invariant. In
shearing sheet simulations, the box size defines a scale; in a real
disk, the disk scale height does. Furthermore, we point out that
the mechanism analyzed by Waleffe (1997), whose qualitative
and semi-quantitative relevance to the present work has been
pointed out hereabove, is somewhat insensitive to the nature of
the imposed boundary condition. Along with the results found
in this paper, this suggests that only a scale rather than a spe-
cific boundary condition needs to be imposed for statistically
stationary turbulence to show up in numerical simulations, as
exemplified in Sect. 3.4. Finally, the role of an increasingly
dominant Coriolis force is not to define another scale, which
it cannot, but to modify the relative range of scales that are re-
quired for turbulence to exist (most likely because of its more
and more stringent time-scale requirement), so that numerical
resolution does play an important role in subcritical turbulence
detection, as can be seen from Fig. 7.

4.5. Boundary conditions and aspect ratio

Assessing the role of boundary conditions on the existence and
properties of subcritical turbulence is an important question,
since real accretion disk boundary conditions are not repro-
ducible in experimental flows. However, the resolution demand
in the local shearing box is already so large for a Keplerian flow
that a global simulation of a subcritical Keplerian disk flow is
totally out of reach. The best we can do is to compare numer-
ical experiments with shearing sheet and rigid/periodic bound-
ary conditions with one another, and with experimental results.
This is the object of this section.
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Fig. 14. Rg(RΩ) plot from experimental data (Tillmark & Alfredsson

1996, crosses), and our numerical simulations using 643 Fourier code

(circles) and 643 finite difference code (triangles) with cubic box and

shearing sheet boundary conditions.

Before doing so, let us point out some important differences
between the two types of boundary conditions:

– In the semi-Lagrangian variables defined by Eqs. (10), the
only difference is that the velocity deviation from the lami-
nar flow cancels on the rigid boundary in the rigid/periodic
case, while it is periodic in the shear direction (as in the oth-
ers) in the shearing sheet case. This results in a suppression
of the boundary layer in the shearing sheet case.

– Characteristic sizes are the same in both cases. However,
while for rigid/periodic conditions, structures are forced to
remain more or less stationary with respect to the walls on
average, this is not the case with shearing sheet boundary
conditions, where structures can move at random through
the boundary. As a consequence, a long-lasting mean flow
distortion is apparent with rigid/periodic boundary condi-
tions (due to the matching of turbulently enhanced trans-
port with the viscous one in the boundary layer), while
in shearing-sheet simulations, although such a distortion is
usually locally found at any given time, it averages out over
time, due to its random localization.

– This relates to a profound difference between accretion
disks and actual experiments. In the latter, the flow pro-
file adjusts to the imposed boundary condition through a
pressure redistribution, and a stationary state is reached. In
the former, this cannot take place, and the disk is never sta-
tionary, due to the resulting turbulent transport of mass and
angular momentum.

In spite of these differences, we shall nevertheless argue that
the choice of boundary conditions has only a limited impact on
some of our qualitative and semi-quantitative results. This sug-
gests that the underlying mechanisms are reasonably closely re-
lated in both settings, although much more work than what has
been possible to do here is required to ascertain this conclusion.

4.5.1. Cyclonic rotation

Figure 14 displays a comparison of our numerical results with
the Tillmark & Alfredsson (1996) data, in the range of rotation
number where these data were collected.

The agreement between the two is fair, with the Fourier
code results being sensibly more compatible with the data than
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Fig. 15. Rec as a function of RΩ for cyclonic rotating plane couette

flow.

the finite difference code ones, at the larger rotation numbers.
This follows because, at the same “resolution”, a Fourier code
is physically more resolved than a Finite difference code. Note
also that some 1283 simulations were performed using the
Fourier code and the same transition thresholds were found
as for the 643 simulations. This supports the idea that the
643 Fourier code results are not resolution limited.

We have also made a few runs using rigid (shearwise direc-
tion) and periodic (other directions) boundary conditions with
our ZEUS-like code. At each rotation number, we made a few
tries with different Reynolds numbers to locate the transition
threshold. Each run was computed from the same initial con-
dition for 400 shear times with 80 × 80 × 40 grid points and
a Lx = 1.75π Ly = 1 Lz = 1.2π aspect ratio box (correspond-
ing to the “minimal flow unit” aspect ratio, i.e. the smallest
box in which turbulence can be sustained with these bound-
ary conditions: see Hamilton et al. 1995, for details). The error
bars upper bounds correspond to the lower Reynolds for which
turbulence is found and the lower bound the higher Reynolds
number for which turbulence is lost. The numerical data are
shown in Fig. 15; the error bars reflect our poor sampling, not
intrinsic fluctuations in the transition Reynolds number. These
data are fitted by a linear law:

Rg = 1400 + 4 × 105RΩ, (32)

the slope of which is 15 times steeper than the one found from
the experimental data.

This dramatic difference in transition Reynolds number
with respect to the experimental and shearing sheet results is
in fact controlled by the choice of the simulation box aspect
ratio. For example, let us choose a longer box in the z direction
(i.e. Lx = 1.75π Ly = 1 Lz = 2.4π). With such a choice, turbu-
lence is sustained at RΩ = 0.01 and Re = 2400, much closer
to the expected transition Reynolds of Fig. 14 than what is pre-
dicted by Fig. 15. Finally, Komminaho et al. (1996), using a
very elongated simulation box in the flow direction, found tran-
sition right at the experimentaly determined Reynolds number
(Rg = 3000, RΩ = 0.06).

These result show the important role of aspect ratio in
subcritical turbulence simulations with rigid/periodic bound-
ary conditions. Apparently, the use of shearing sheet boundary
conditions relaxes this constraint. This is reasonable since the
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Fig. 16. Rg(RΩ) plot from experimental data on Taylor-Couette flows

(Richard 2001, crosses), and the various numerical simulations results

and related fits shown in Fig. 7.

shearing sheet box allows more freedom than rigid boundary
conditions. In actual experiments, the aspect ratio is not an is-
sue since usually very large Lx/Ly and Lz/ly are used, so that
the turbulence coherence length can freely adjust itself in these
directions.

These results also indirectly suggest that the turbulence sat-
uration mechanism is not strongly affected by the use of shear-
ing sheet boundary conditions. One would nevertheless expect
that the reduction of the shear in the middle of the flow, due
to the mean velocity profile modification which occurs with
rigid/periodic boundary conditions, produces a reduced turbu-
lent transport. This is indeed the case: e.g., the turbulent trans-
port at marginal stability (RΩ = 0) is 〈vxvy〉 # 2 × 10−3(S d)2

for the rigid/periodic boundary conditions16, while one has
〈vxvy〉 # 0.4(S d)2 throughout the flow with the shearing sheet
boundary conditions, although the transition Reynolds number
is the same in both instances. These features most probably
find a natural explanation if the turbulence amplitude satura-
tion mechanism is primarily controlled by the system nonlin-
earities, and not by the mean profile deformation.

4.5.2. Anticyclonic rotation

The comparison of our numerical results with Richard (2001)
data is shown in Fig. 16.

The discrepancy between the experimental and numerical
data is striking, especially at the light of the remarkable con-
sistency observed for cyclonically rotating flows. In particular,
the increase in transition Reynolds is considerably steeper in
the numerical data than in the experimental ones. Note however
that the numerical and experimental data seem to give the same
transition Reynolds number at the marginal stability boundary.

Longaretti & Dauchot (2005) have argued that the flow cur-
vature plays no role in the anticyclonic flow data of Richard
(2001), so that the origin of the large discrepancy between the

16 This is measured in the middle of the flow where the turbulent

transport is maximized, and viscous transport negligible.

numerical and experimental results must be found elsewhere17.
In this respect, note that experimental secondary flow distor-
tions are much more likely to induce a linear instability some-
where in the flow on the anticyclonic side as on the cyclonic
one. Indeed, recall that the stability limit is defined by Eq. (9).
Consider the cyclonic marginal stability limit first (RΩ = 0),
and assume that one moves away from it by imposing a small
change in rotation δΩ. The required change in shear profile δS
to locally achieve 2δΩ/(S (y) + δS ) < 0 is large: δS ∼ S (y) is
needed. Conversely, at the anticyclonic marginal stability limit
(RΩ = −1, i.e., S = 2Ω), upon a small change δΩ of the ro-
tation rate, a change δS # 2δΩ ' S suffices to locally make
2Ω/S > −1 and produce a linear instability somewhere in the
system. This argument shows that the presence of secondary
flows, such as Ekmann’s circulation, can easily make the flow
more unstable than it would be in its absence in anticyclonic
flows, whereas this is much more difficult to achieve in cy-
clonic ones. This may easily explain the discrepancy between
numerical and experimental results shown in Fig. 16, while the
agreement is remarkable at the marginal stability boundary.

5. Summary and conclusions

The central results of this paper are displayed in Figs. 4, 5, 7−9,
and their significance and implications are discussed in
Sects. 3.3, 3.4, 4.1−4.4. The main implications of these results
are summarized in the abstract. In the course of the discussion,
we have found that a number incorrect statements have been
made in the literature, most notably concerning the existence
and importance of subcritical turbulence in presence of a dy-
namically significant Coriolis force. We have also found that
resolution is a key issue for subcritical anticyclonically rotat-
ing flows (including Keplerian ones), and have quantified the
relation between resolution, rotation and Reynolds number. In
relation to this, we believe that the question of resolution of
the dissipation scale is not emphasized enough in the astro-
physics literature, and the potential effects of this problem are
most probably underestimated.

Our simulations do not faithfully represent a real disk: nei-
ther vertical stratification, nor, more critically, realistic vertical
boundary conditions have been implemented. A real (hydrody-
namic disk) moves either in vacuum, or, more probably, in a
hot corona. In both cases, one expects the real vertical bound-
ary condition in the disk to be (nearly) stress-free. We have
made some very preliminary simulations of ah stratified disk-
corona system to test this idea, where most of the inertia lies
in the disk. Although a strong numerical mixing of the corona
and the disk at the interface prevents us to evolve the system
for a long time (50ts max), no significant difference in the over-
all dynamics of the disk did show up. However this problem
probably requires more careful investigations to validate this
conclusion.

Overall, the outcome of this investigation still leaves us
with the issue of transport unresolved in MHD-inactive flows

17 In any case, the flow curvature always increases the transition

Reynolds number, so that including curvature in the analysis of this

problem can only make it worse, not better.
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(and possibly in some MHD-active ones), and we will briefly
comment the various ways out of this conundrum.

We first note that an efficient enough local instability should
lead to a large enough turbulent transport, because the tran-
sition to fully developed turbulence usually occurs to signif-
icantly lower Reynolds numbers in these systems than the
ones found here. This is true, e.g., in rotating shear flows
of the type considered here, in the linearly unstable regime.
However, no such instability has yet been found in hydrody-
namical Keplerian flows, either stratified or not, as discussed
in the introduction. It remains to be seen whether another such
instability can operate in hydrodynamic disks, but the list of po-
tential driving agents has by now significantly been narrowed.

In what concerns the YSO disks dead-zone in particular,
it may be that the disk stirring due to the MRI above and be-
low the dead-zone itself (Fleming & Stone 2003) might provide
enough transport in the end if it excites large enough large scale
2D disturbances of the right type (Ioannou & Kakouris 2001)
in the disk. However, this option remains to be worked out in
detail.

It has often been noted that transport in disks may not be
due to turbulence but to waves (see, e.g., Papaloizou & Lin
1995 for an introduction to the subject). Recent results on the
existence of vortices in stratified disks (Barranco & Marcus
2005) and on the coupling of waves to vortices resulting in effi-
cient transport in 2D dynamics (Bodo et al. 2005 and references
therein) support this idea.

Appendix A: Displaced particle analysis
for rotating flows

The following line of argument closely follows Tritton &
Davies (1981) and Tritton (1992). Let us consider a rotating
shear flow, whose dynamics is controlled by Eq. (1). As in
Sect. 2.1, x is the direction of the flow, y the direction of the
shear, and z the direction perpendicular to the x, y plane, in
which the rotationΩ is applied. The laminar equilibrium veloc-
ity uL = (U(y), 0, 0) generates a Coriolis force in the y direction
of magnitude −2ρΩU (in algebraic value), which is balanced
by the equilibrium generalized pressure gradient −dπ/dy.

Let us further consider two fluid “rods” of infinite ex-
tent in the streamwise direction x, and located at positions y1

and y2 = y1+δy. The streamwise velocities of these rods are U1

and U2, respectively. Let us assume that one displaces the rod
at y1 to location y2, without disturbing the pressure distribution.
Although the total work of the Coriolis force vanishes, there is
a net partial work due to the force component in the x direction
which originates in the velocity v of this displacement in the
y direction. Because of this partial work, the rod experiences
a change of x momentum, and therefore of x velocity, which
reads

U ′1 − U1 =

∫
2Ωvdt = 2Ωδy, (A.1)

so that the velocity U ′1 of the rod when it reaches location
y2 differs from the equilibrium velocity U2, and correlatively,
the x component of the Coriolis force acting on this displaced

Fig. A.1. Sketch of the effect of the Coriolis force on the displaced

particle (see text).

rod, −2ρΩU ′1 (in algebraic value) differs from the equilibrium
one, −2ρΩU2 (see Fig. A.1).

Consequently, the net result between the equilibrium pres-
sure gradient and the Coriolis force will tend to restore the dis-
placed rod to its equilibrium position18 if U ′1 > U2, or displace
it further if U ′1 < U2. From Eqs. (A.1) and (3), one obtains

U′1 − U2 = 2Ωδy −
dU

dy
δy = S (RΩ + 1)δy, (A.2)

where S = −dU/dy is the shear. From this result, the net force
(Coriolis and pressure) on the displaced rod reads

2ρΩ(U2 − U ′1) = −ρS 2RΩ(RΩ + 1)δy. (A.3)

This shows that equilibrium is always restored when RΩ > 0 or
RΩ < −1 and destroyed otherwise (equality holds at marginal
stability). This is the result quoted in Sect. 2.1. This result can
also be directly derived from the linearized eulerian equation
of motion with the use of spatially uniform perturbations of the
pressure and the velocity.
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ABSTRACT

The magneto-rotational instability is presently the most promising source of turbulent
transport in accretion disks. However, some important issues still need to be addressed
to quantify the role of MRI in disks; in particular no systematic investigation of the role
of the physical dimensionless parameters of the problem on the dimensionless transport
has been undertaken yet. After generalizing existing results on the marginal stability
limit in presence of both viscous and resistive dissipation, we reexamine this problem
through numerical simulations in the simplest setting of a local, unstratified shearing
box, with the help of a pseudo spectral incompressible 3D code; viscosity and resistivity
are explicitly accounted for. We focus on the effect of the dimensionless magnetic field
strength, the Reynolds number, and the magnetic Prandtl number. First, we complete
existing investigations on the field strength dependence by showing that the transport
in high magnetic pressure disks close to marginal stability is highly time-dependent
and surprisingly efficient. Second, we bring to light a significant dependence of the
global transport on the magnetic Prandtl number, with α ∝ Pmδ for 0.12 < Pm < 8
and 200 < Re < 6400 (δ being in the range 0.25 to 0.5), which is not correlated to the
linear growth rate. This result is quite critical to accretion disk transport theory, as
the magnetic Prandtl number Pm is expected to vary by many orders of magnitude
between the various classes of disks, from Pm " 1 in YSO disks to Pm # 1 in AGN
disks. More generally, these results stress the need to control dissipation processes in
astrophysical simulations.

1 INTRODUCTION

Angular momentum transport has always been a central is-
sue in accretion disk theory. The first α model (Shakura
& Sunyaev 1973) already assumed the presence of strong
turbulent motions, modelled through an effective viscosity,
orders of magnitude larger than the expected disk molec-
ular viscosity. Since then, the physical origin of this turbu-
lence has been highly debated. As purely hydrodynamic non
stratified Keplerian flows are known to be linearly stable to
small perturbations, a finite amplitude instability was first
envisioned to trigger turbulence. This question was stud-
ied both experimentally (Richard & Zahn 1999; Richard
2001; Richard et al. 2001) and numerically (Balbus et al.
1996; Hawley et al. 1999), leading to a long controversy.
More recent numerical and experimental investigations of
this problem strongly support the idea that the transport
due to this mechanism, if present, would be far too inefficient
to account for the short disk evolution time-scales imposed
by astrophysical observations (Lesur & Longaretti 2005; Ji
et al. 2006). Linear instabilities of hydrodynamic origin have
also been envisioned as a source of turbulence, relating in
particular to the flow stratification (Klahr & Bodenheimer
2003; Urpin 2003; Dubrulle et al. 2005; Shalybkov & Ruedi-
ger 2005), but these are either not present or too inefficient

(Johnson & Gammie 2006; Arlt & Urpin 2004; Longaretti
& Lesur 2007; see Lesur & Longaretti 2005 and references
therein for a recent review of this issue).

The potential role of MHD instabilities in accretion
disks was pointed out in a seminal paper by Balbus & Haw-
ley (1991), devoted to an analysis of what is now known
as the magneto-rotational instability (MRI). This instabil-
ity has been extensively studied since then, mainly with the
help of local (Hawley et al. 1995; Stone et al. 1996) and
global (Hawley 2000) 3D numerical simulations. Although a
more recent set of numerical simulations did focus on MRI
energetics (Gardiner & Stone 2005), the dissipation of tur-
bulent fields in these simulations is not controlled, as no
physical term was introduced to account for physical vis-
cosity and resistivity. Note however that Brandenburg et al.
(1995) have introduced such dissipation in their simulations,
but kept it as small as possible, leading to simulations dom-
inated by artificial and numerical dissipations. The resistive
term alone has also been introduced by Fleming et al. (2000),
but viscous effects were still neglected. This raises questions
about the exact role of numerical dissipation in all these
simulations, especially at the light of our recent investiga-
tion of subcritical turbulence in accretion disks (Lesur &
Longaretti 2005), which clearly showed that a careful con-
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trol of dissipation and resolution — and more generally of
the dimensionless parameters of the problem — is required
to properly quantify turbulent transport.

This issue is addressed here in the context of MRI-
driven turbulence, using a 3D spectral Fourier code, which
allows a precise monitoring of viscous, resistive and numer-
ical dissipation. First, we recall the MHD equations in the
shearing sheet framework (Hawley et al. 1995), along with
the relevant dimensionless parameters of the problem, and
summarize what is known about their effect on MRI-induced
turbulent transport. Next, we investigate the linear stabil-
ity of the MRI, which to the best of our knowledge has not
been characterized when both viscosity and resistivity are
accounted for in the dispersion relation. Then, we present
new results on the behavior of turbulent transport in dimen-
sionless parameters regime that have not been investigated
in the past: first, very close to the threshold of instability
(in terms of relative magnetic field strength), and then with
respect to the magnetic Prandtl number, which has been ig-
nored in all previous investigations. The dependence of tur-
bulence transport on the magnetic Prandtl number is the
most significant finding of this investigation. This depen-
dence may turn out to be critical, as the magnetic Prandtl
number varies by many order of magnitudes in astrophysi-
cal disks. The astrophysical implications of our findings are
further discussed in our concluding section, and potential
caveats relating to numerical limitations that may influence
our results.

2 SHEARING BOX CHARACTERIZATION

AND SUMMARY OF EARLIER RESULTS

The MRI has already been extensively studied in the lit-
erature (see, e.g., Balbus 2003 and references therein for a
review of the subject). Our objective is to extend previous
work through a systematic exploration of the dependence of
the MRI-induced transport on the physical quantities char-
acterizing the problem. For simplicity, we work in a shearing
sheet setting (see Hawley et al. 1995 for a description of the
shearing box equations, numerical boundary conditions, and
conserved quantities); vertical stratification is ignored, but
both viscous and resistive microphysical (molecular) dissi-
pation are included. This differs from previous investiga-
tions, where this is always ignored. Our previous experi-
ence with subcritical hydrodynamic transport has shown us
that the inclusion of explicit dissipation is required to pre-
cisely characterize transport properties and distinguishing
resolved simulations from unresolved ones (see Lesur & Lon-
garetti 2005 for an extensive discussion and illustration of
these points).

The problem is formulated in a cartesian frame centered
at r = R0, rotating with the disk at Ω = Ω(R0) with radial
dimension H ! R0. In this work, H is the size of our sim-
ulation boxes, in all spatial dimensions. This leads to the
following set of equation, assuming φ → x, r → −y:

∂tu + u · ∇u = −
1
ρ
∇P +

1
µ0ρ

(∇ × B) × B, (1)

−2Ω × u − 2ΩSyey + ν∆u

∂tB = ∇ × (u × B) + η∆B, (2)

∇ · u = 0, (3)

∇ · B = 0, (4)

where the medium shear is defined by S = −r∂rΩ. For sim-
plicity, incompressible motions are assumed. This is a priori
justified by the fact that MRI-induced motions are usually
subsonic, so that one expects at least in first approxima-
tion that compressibility effects do not play a major role
in the problem. This approximation allows us to remove the
flow Mach number from the list of dimensionless parameters
characterizing the problem, so that we can more effectively
isolate and quantify the role of the various physical agentsh.

The terms on the right-hand side member of Eq. (1) are
the gas pressure, Lorentz force, Coriolis force, tidal force,
and viscous dissipation, respectively. The steady-state so-
lution to this equation is the local profile u = Syex with
S = 3/2Ω for Keplerian disks. In the remainder of this pa-
per, we will use the deviation from the laminar profile v

defined by v = u−Syex. For simplicity, we take the steady-
state magnetic field B0 along the vertical axis. Note that this
field is also the average field in the shearing sheet box, and is
conserved during the evolution thanks to the shearing sheet
boundary conditions (Hawley et al. 1995).

These equations are characterized by four dimensionless
numbers, the first three relating to the Navier-Stokes equa-
tion while the last one belongs to the induction equation:

• The Reynolds number, Re ≡ SH2/ν, measuring the
relative importance of nonlinear coupling through the ad-
vection term, and viscous dissipation.

• A proxy to the plasma beta parameter, defined here as
β = S2H2/V 2

A where V 2
A = B2

o/µoρ is the Alfvén speed. The
rationale of this definition follows from the vertical hydro-
static equilibrium constraint cs ∼ ΩH , which is expected
to hold in thin disks, so that our definition of β is indeed
related to the plasma parameter in an equivalent, vertically
stratified disk. This parameter measures the relative weight
of the Lorentz force and the advection term.

• The rotation number (inverse Rossby number), defined
as RΩ = 2Ω/S, which measures the relative importance of
the Coriolis force.

• The magnetic Reynolds number, Rm = SH2/η, which
measures the relative importance of resistive dissipation
with respect to the ideal term in the induction equation.

We consider only Keplerian disks in this investigation,
so that the rotation number is held fixed to its Keplerian
value RΩ = −4/3. This leaves us with three independent
dimensionless numbers: β, Re, and Rm.

On the other hand, the (local in the disk) dimensionless
transport coefficient,

α =
〈vxvy − BxBy/(µoρ)〉

S2H2
, (5)

being a dimensionless number, can only depend on the lo-
cal dimensionless parameters characterizing the flow that
we have just defined (the bracketing refers to appropriate



2. DIMENTIONLESS NUMBERS & MRI-INDUCED TURBULENT TRANSPORT 221

Impact of dimensionless numbers on the efficiency MRI-induced turbulent transport. 3

box and/or time averages) 1. Our task reduces to char-
acterize this dimensionless transport, as a function of the
three independent dimensionless numbers just defined. How-
ever, for later convenience, we take them to be β, Re and
Pm ≡ ν/η = Rm/Re instead (the rationale of this latter
choice will become apparent later on).

All previous investigations ignore the dependence on
the last two dimensionless numbers, who have not been in-
cluded in the physical description up to now. Within such
an approximation, Hawley et al. (1995) have characterized
the dependence of α on β. Their results imply that

α " 3β−1/2, (6)

from their Eqs. (10), (15), (16) and (18).
This implies in particular that α increases when the ini-

tial (and box average) magnetic field Bo is increased. How-
ever, for a large enough field, the smallest unstable wave-
length (which increases along with Bo) becomes larger than
the box size, and the instability is quenched. On this ba-
sis, one expects that the scaling Eq. (6) would break down
close enough to the critical β stability limit. This question is
somewhat investigated in the present work. However, most
of our effort is devoted to characterizing the Re and Pm
dependence of α.

3 LINEAR STABILITY ANALYSIS

The linear stability of differentially rotating disks in pres-
ence of a magnetic field was first investigated in the as-
trophysical context by Balbus & Hawley (1991). Then, the
instability in the weakly ionized case has been considered
(Blaes & Balbus 1994; Wardle 1999; Balbus & Terquem
2001), leading to the well known Dead Zone problem (Gam-
mie 1996). However, we are not aware of any clear indica-
tion of the stability limits of the fluid when both viscous and
resistive dissipation are present in the general astrophysical
context. Some discussions has been done on this point in the
litterature, mostly motivated by liquid-metal experiments,
in the limit Pm # 1 (Ji et al. 2001; Rüdiger & Shalybkov
2002). However, these papers exhibit no clear asymptotical
limit that may be applied for astrophysical disks. Therefore,
we provide such an analysis here, as a prelude to our non-
linear simulations.

We will consider only axisymmetric perturbations, so
that we can eliminate the azimuthal perturbation transport
term. Note that this assumption does not seem to have a
great influence on the stability limit, since 3D numerical
simulations and linear analysis of axisymmetric modes ex-
hibit nearly the same stability limit; this holds in particular
in the simulations presented here. The new physics intro-
duced by these equations is the ν and η coefficient, which
are respectively the kinematic viscosity and resistivity.

We linearize and Fourier transform the equations of
motion by assuming v = v0 exp

`

i(ωt − kyy − kzz)
´

and
b = b0 exp

`

i(ωt − kyy − kzz)
´

. This yields the following
linearized equation set:

1 It may also depend on the simulation aspect ratio and resolu-
tion, from a numerical point of view.

(iω + νk2)v0 = i kψ − i kz
B0

µ0ρ0

b0 (7)

+(2Ω − S)vyex − 2Ωvxey ,

(iω + ηk2)b0 = −i kzB0v + bySex, (8)

i k · v = 0, (9)

i k · B = 0, (10)

where ψ is the perturbation in total pressure (P +B2/µ0)/ρ.
Introducing ων ≡ ω − iνk2 and ωη ≡ ω − iηk2, the Alfvén
speed V 2

A = B2
0/µ0ρ, the epicyclic frequency κ2 = 2Ω(2Ω −

S) and γ2 = k2
z/k2, one eventually gets the dispersion rela-

tion:

(ωνωη − k2
zV 2

A)

 

ω2
νω2

η − 2ωνωηk2
zV 2

A − ω2
ηκ2γ2

−k2
zV 2

A

“

2ΩSγ2 − k2
zV 2

A

”

!

= 0. (11)

which we now solve in various dissipation regimes.

3.1 Pm = 1 behavior

Let us first look at the Pm = 1 case, where the disper-
sion equation can be solved exactly by analytical means.
The condition %(ω) < 0 expresses the existence of the in-
stability. From this condition, the MRI exists if and only if
ν2k4 < −ω2

ν . From this constraint and the dispersion rela-
tion Eq. (11), one find that:

ν2 <

p

κ4γ4 + 16k2
zV 2

AΩ2γ2

2k4
−

k2
zV 2

A

k4
−

κ2γ2

2k4
, (12)

is a necessary and sufficient criterion for instability. One
can check that the highest ν values obtain when γ = 1 and
kz = min(kz) = 2π/H , which corresponds to the so-called
channel flow solution in the z direction. From our definition
of the Reynolds number as Re = SH2/ν where H is the
numerical box height or the typical disk height, and of the
plasma parameter β = S2H2/V 2

A, the stability limit Eq. (12)
translates into a relation between these two parameters, rep-
resented on Fig. 1.

Note that the instability has two different limits, de-
pending on the β parameter:

• A high β regime, corresponding to a low magnetic pres-
sure. In this regime, marginal stability occurs at a character-
istic Reynolds number value Rec " 80. This behavior illus-
trates that the growth time scale of the most unstable mode
must be shorter than the dissipation time scale, defined by
τd " k2/ν.

• A low β regime, which is nearly Reynolds independent.
In this region, one can define a critical β (βc = 29.5) for
which the MRI is lost. This behavior can be explained by
considering the unstable mode of shortest wavelength: as β
goes to smaller values, the smallest unstable wavelength in-
creases (see Eq. 12). At some point it becomes larger than
the scale height H (or box size in our case) and the insta-
bility is lost. Since this phenomenon takes place at large
scale, the Reynolds number has naturally no role to play in
it. Note that this regime is not specific to our unstratified
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Figure 1. MRI linear stability limit

calculation, since similar results are found for a stratified
medium where marginal stability usually occurs for βc ! 1
(see e.g Balbus & Hawley 1991 and Gammie & Balbus 1994).
This limit is reached when the last factor in Eq. (11) cancels
out, i.e., when 2ΩS = V 2

Ak2
z (the usual dissipationless MRI

stability limit).

3.2 Pm != 1 behavior

The dispersion relation can no longer be solved exactly in
this case, but an approximate solution can be found in
the low magnetic field limit (VA → 0, or more precisely
VAkz # κ), where marginal stability follows from a bal-
ance between the destabilizing term, and the dissipation
ones. The “opposite” (high β) marginal stability limit, where
destabilization is balanced by the usual Alfvénic magnetic
tension, is briefly addressed at the end of this section.

In the limit of vanishing magnetic field, the dispersion
relation has two relevant roots ω2

η = 0 and ω2
ν = κ2. In

what follows, we refer to these roots as the Alfvénic and the
inertial branch, respectively. Looking for the first order cor-
rection in V 2

Ak2
z to the Alfvénic branch yields the following

result, which describes the MRI modes:

ω = iηk2
z ± i

 

2ΩS
k4

z(η − ν)2 + κ2

!1/2

VAkz. (13)

Note that viscosity and resistivity do not play a sym-
metric role in this expression. Two interesting limits with
respect to the magnitude of the viscosity prove useful to
characterize marginal stability. As before, we maximize in-
stability by assuming γ = 1 and kz = 2π/H .

3.2.1 Low viscosity limit:

First consider the limit where νk2
z # κ. In this case, Eq. (13)

reduces to ηk2 = (2ΩS/κ2)VAkz (where ηk2
z # κ has been

self-consistently used), which, using the Lundquist number
defined as Lu = Rmβ−1/2, can be recast as

Lu =

„

2π
31/2

«

% 3.6. (14)

Note that our definition of the Lundquist number is not

strictly identical to Turner et al. (2006) but is widely used
in the MHD community2 In this regime, the ω2

ηκ2 term bal-
ances the 2ΩSV 2

Ak2
z term in the dispersion relation Eq. (11).

Eq. (14) corresponds to the limit found by Fleming et al.
(2000). It is also related to the origin of the “dead zone” in
accretion disks (see e.g Gammie 1996). This marginal sta-
bility limit is relevant to disks with low Prandtl numbers
(Pm # 1) and high Reynolds numbers (Re & 1), such as
YSO disks.

Also, for negligible resistivity, growth rates in this
regime are given by

τ−1 %
1
2π

„

2ΩS
κ2

«

VAkz. (15)

This result is valid for VAkz " κ due to our expansion
scheme; it also gives the correct order of magnitude of maxi-
mum growth rates when VAkz ∼ κ, as shown by the standard
dissipationless MRI analysis.

3.2.2 High viscosity limit:

Conversely, consider the large viscosity limit, where νk2 &
κ. The corresponding relations in this limit are

ReRm =
31/2

2
(2π)3β1/2 % 215β1/2. (16)

and

τ−1 %
1
2π

„

2ΩS
νk2

z

«

VAkz. (17)

In this regime, the ω2
νω2

η term balances the 2ΩSV 2
Ak2

z term
in the dispersion relation Eq. (11). The growth rates rele-
vant here are much smaller than in the small viscosity limit,
Eq. (15). In fact, Eq. (13) indicates that this is the case as
soon as νk2

z " κ, or equivalently, for the largest mode, when

Re ! 3(2π)2/2 % 60. (18)

This limit divides the low and high viscosity regime.
The marginal stability limit Eq.(16) obtains for large

Prandtl and small Reynolds numbers. In the large Prandtl
(Pm & 1) and large Reynolds number limit (Re & 1) ex-
pected in AGN disks, the growth rates of Eq. (15), or more
generally of dissipationless MRI, are recovered. As before,
these growth rates are expected to be valid (in order of mag-
nitude) for VAkz " κ due to our expansion scheme.

Note finally that a similar analysis can be performed for
the inertial modes, but is not very informative; the damping
of these modes is dominated by viscous dissipation, as these
are mostly driven by the epicyclic motion.

2 The difference lies in the fact that our calculation is made in
the limit of high β, leading to a linear growth rate controled by
VA instead of Ω
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3.2.3 High β limit:

Although we did not investigate this case in much detail,
it is apparent from Eq. (11) that when 2ΩS = V 2

Ak2
z [can-

cellation of the last term in Eq. (11)], ωη = 0 is one of
the solutions to the dispersion relation. At the light of our
preceding analyzes, and because this equality embodies the
MRI stability limit in the ideal case, as recalled above, it is
apparent that this relation is the relevant limit in a small
dissipation context as well, generalizing the result found for
Pm = 1.

3.2.4 Heuristic explanation:

To explain the behavior brought to light in Eqs. (14) and
(16), it is useful to recall the physical origin of the insta-
bility, as discussed, e.g., in Balbus & Hawley (2003), in the
dissipation-free limit; the process is sketched on see Fig. 2,
for convenience. Assume for definiteness that one starts by
distorting the equilibrium velocity field in the radial direc-
tion with a sinusoidal perturbation in the vertical direction:
vy = vy0

exp
`

− ikz
´

. The magnetic field being frozen in
the fluid will also develop a radial component [first term
in the right-hand side member of the linearized induction
equation, Eq. (8)]; the shear will then transform this radial
field in an azimuthal one [second term in the right-hand
side member of the linearized induction equation, Eq. (8)].
The resulting tension force produces a momentum trans-
fer between fluid particles that have been moved according
to the imposed velocity perturbation [second term in the
right-hand side member of the linearized motion equation,
Eq. (8)]. This force is destabilizing if the angular velocity
decreases with radius: indeed in this case, the inner parti-
cle, moving faster than the outer one, will transfer orbital
momentum to the outer one, thereby reinforcing its inward
motion, an effect mediated by the Coriolis force when seen
in the rotating frame. In this description, marginal stabil-
ity follows when the driving mechanism is balanced by the
usual tension restoring force (the piece not connected to the
generation of magnetic field from the mean shear).

What does dissipation change to this picture ? For defi-
niteness, let us focus on marginal stability and let us consider
only resistive dissipation for the time being (“large” viscos-
ity limit). In this limit, the magnitude of the velocity and
magnetic fields in the various steps of the instability mecha-
nism described above are controlled by dissipation processes
so that one may again go through the preceding process step
by step, assuming equilibrium at each step. The magnitude
of the radial magnetic field in this context results from the
balance between the motion driving and field dissipation:

−ikB0vy = ηk2by , (19)

while the shearing generation of the azimuthal field from the
radial one is also balanced by resistive dissipation:

Sby = ηk2bx. (20)

Both relations follow from the induction equation in the
marginal stability limit, except for the term dropped in
Eq. (20), which leads to the usual magnetic tension sta-
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Figure 2. Sketch of the MRI mechanism (see text).

bilization and is of no interest in the limit considered here.
The azimuthal force balance then requires that

(2Ω− S)vy = −i
kB0

µ0ρ0

by , (21)

i.e., ω2
ηκ2 = 2ΩSV 2

Ak2, once the two preceding constraints
are taken into account (inclusion of ω in this line of argument
does not change the result). As noted earlier, this relation
directly leads to Eq. (14).

If one assumes instead that viscous dissipation exceeds
the Coriolis force in magnitude, then the magnetic tension
due to the generation of azimuthal field from the radial
one by the shear should be balanced by viscous dissipation
instead of the Coriolis force in the two horizontal compo-
nents of the momentum equation, leading alternatively to
ωη2ω2

ν = 2ΩSV 2
Ak2, i.e. to Eq. (16).

This also relates to the structure of MRI modes. In the
limit of a very small magnetic tension restoring force, the
Alfvénic branch is made of by dominated modes. The other
components of the magnetic field and the velocity field are
of the order of VAk compared to by. Therefore, the growth
rate is at first controlled by the dissipation rate of by, which
is related to the resistivity [first term of the right hand side
of Eq. 13]. The interaction of the other fields, which leads
to the MRI, is controlled by a term symmetric in ν and η
[second term of Eq. 13)].

3.2.5 Generic behavior:

A more complete view of the stability limits and growth
rates implied by Eq. (11) may be obtained from exact nu-
merical solutions for Pm "= 1. Expressing this dispersion
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Figure 3. MRI linear stability limit in the Pm != 1 case for
β = 104.

relation in terms of ω leads to the condition:

ω4 −2ik2ω3(η + ν) − ω2

“

a + k4(η2 + ν2 + 4ην) + b
”

+ω
“

2ik6(ην2 + νη2) + aik2(ν + η) + 2ibηk2

”

+ν2η2k8 + aνηk4 + bη2k4 − c = 0, (22)

with

a = 2k2
zV 2

A (23)

b = κ2γ2 (24)

c = k2
zV 2

A(2Ωγ2S − k2
zV 2

A) (25)

To characterize the stability limits as a function of
the Reynolds and the Magnetic Reynolds number (Rm =
SH2/η), one needs to choose β, γ and kz. As in the Pm = 1
case, we take kz = 2π/H and γ = 1 (which are again ex-
pected to maximize the dissipation limits), and solve the
relation (22) for β = 104. The resulting stability limits
are shown on Fig. 3 and the corresponding growth rates
on Fig. 4 (arbitrary units). These results match closely
the analytical limits just discussed : a high Re threshold
found for Rm ∼ 371, and a low Re threshold found for
RmRe ∼ 2.3 × 104, both in agreement with Eqs. (14) and
(16), respectively. Moreover, significantly lowered growth
rates are observed when Re $ 60 to 80, as predicted by
Eqs. (17) and (18). A similar behavior follows at much
smaller β. For example, the observed scalings are identi-
cal, and the preceding asymptotic expressions valid within a
factor of 2, down to β values of the order of twice the critical
β limit.

These results indicate that most of the stability limit
behavior is captured by the approximate relations Eqs. (14)
and (16) (as well as by the large field β limit, where relevant),
whose physical origin has been discussed above.

3.3 Numerics

3.3.1 Equations

Our objective is to simulate the system of Eqs. (1) and (2),
with the incompressiblity condition Eq. (3), to characterize

Figure 4. MRI growth rate (arbitrary unit) as a function of
viscous and resistive dissipation for β = 104

the dependence of turbulent transport on the main dimen-
sionless numbers introduced above (β, Re and Pm). We
focus on incompressible motions; indeed, the values of α
found in previous investigations makes us a priori expect
that compressibility effects will be small. In any case, this
allows us to more effectively distinguish the effects of the
various physical mechanisms at work in this problem.

First, we simplify the problem from a numerical point
of view by distinguishing the mean laminar shear u = Syex

from the deviation from this mean w. The resulting equa-
tions read:

∂tw + w · ∇w = −Sy∂xw − ∇ψ +
B × (∇ × B)

µ0ρ0

+(2Ω− S)wyex − 2Ωwxey + ν∆w

∂tB + w · ∇B = −Sy∂xB + B · ∇w + BySex + η∆B

∇ · w = 0

∇ · B = 0

This system is numerically solved using a full 3D spec-
tral code, using the classical shearing sheet boundary condi-
tions (Hawley et al. 1995). This code is now briefly described.

3.3.2 Numerical code

The code used for these simulations is an MHD extension
of the HD code used in Lesur & Longaretti (2005), and ex-
tensively described there. This code is a full 3D spectral
(Fourier) code, based on FFTW libraries, parallelized using
the MPI protocol. This kind of code has many advantages
for the simulation of incompressible turbulence, such as:

• The incompressibility and solenoid conditions are easily
implemented at machine precision, using a projector func-
tion in the Fourier space.

• The energy budget is much easier to control, leading
to a precise quantification of the energy losses by numerical
dissipation.

• Spatial derivatives are very accurate down to the grid
scale (equivalent to an infinite order finite difference scheme
down to the grid scale).



2. DIMENTIONLESS NUMBERS & MRI-INDUCED TURBULENT TRANSPORT 225

Impact of dimensionless numbers on the efficiency MRI-induced turbulent transport. 7

Figure 5. wy plot (radial velocity) for β = 100, Re=3200,

The algorithm used is a classical pseudo spectral
method which may be described as follows. All the deriva-
tives are computed in Fourier space. However the nonlinear
term require special treatment : in Fourier space, a real space
product is a convolution, for which the computational time
evolves as n2, where n is the number of grid cells. The com-
putation time is minimized if one goes back to real space,
compute the needed product and then transforms the re-
sult to Fourier space. This procedure (pseudo spectral pro-
cedure) is more efficient than a direct convolution product
since the FFT computation time scales as n log n. However,
the finite resolution used in this procedure generates a nu-
merical artifact commonly known as the “aliasing” effect
(apparition of non physical waves near the Nyquist Fre-
quency). This effect may be handled through a dealiazing
procedure, in which the nonlinear terms are computed with
a resolution 3/2 higher than the effective resolution used in
the source terms (e.g., Peyret 2002).

Comparing our spectral code with a ZEUS-type finite
difference code (Stone & Norman 1992), similar results are
obtained with a finite difference resolution two to three times
higher than the spectral resolution. However, FFTs calcula-
tions are more computationally expensive than finite differ-
ences, leading to a final computational time equivalent for
both kind of code with the same “effective” resolution.

All the simulations presented in this paper were per-
formed with an xyz resolution of 128 × 64 × 64 with an
aspect ratio of 4× 1× 1, x being the azimuthal direction, y
the radial direction and z vertical direction. One may change
the physical viscosity and resistivity as well as the magnetic
field intensity (β). The mean magnetic field (conserved in
the simulations due to the adopted boundary conditions) is
aligned in the z direction. White noise initial perturbations
with respect to the laminar flow are introduced as initial
conditions on all variables. With β = 100, Pm = 1 and
Re = 3200 one typically generates flow snapshots as shown
on Fig. 5 after relaxation of transients; this flow is quite
characteristic of a fully developed 3D turbulent field 3.

3 Movies of some of the simulations presented in this paper may
be found on the web at
http://www-laog.obs.ujf-grenoble.fr/public/glesur/index.htm

3.4 MRI behavior near the instability threshold

The MRI is a weak magnetic field instability, which should
be quenched for β " 1 in astrophysical disks. Since the MRI
is assumed to be the source of momentum transport in disks,
and as at least some such disks are expected to be close
to equipartition if they are to support magnetically driven
ejection (Ferreira 1997), on may wonder if this instability
is efficient enough in the vicinity of near the strong mag-
netic field stability threshold. We investigate this question
in an unstratified context here (the absence of stratification
significantly raises the β stability threshold).

We present two simulations, one made at β = 100 and
Re = 3200 (run 1) which compares to typical results one
can find in the literature, and a simulation made close the β
threshold, i.e. for β = 30 and Re = 3200 on figs (6) and (7).
One immediately notes a strong difference between these two
simulation. On run 1, we find a classical MRI behavior, as
studied by Hawley et al. (1995), characterised by α ∼ 10−1

and random variations in all the statistical quantities. How-
ever, run 2 exhibits strong exponential growth (“bursts”) for
about 100 shear times (∼10 orbits), and a sudden drop of
fluctuation amplitudes. This behavior is explained as follows
: for such low β only the largest wavelength mode is unsta-
ble (and not smaller scales), which is then allowed to grow
for many shear times, as this mode is an exact nonlinear
solution to the incompressible equations of motions (Good-
man & Xu 1994). We therefore observe the growth of the
channel flow as seen by Hawley & Balbus (1992). However,
as this channel solution reaches large amplitude, secondary
instabilities such as the Kelvin-Helmoltz instability quickly
destroys this channel flow solution once they are triggered,
and a new cycle starts (see Goodman & Xu (1994) for a
detailed description of these secondary instabilities).

Note that this kind of explanation may also apply to
the low Reynolds threshold, since there the smallest scales
are viscously damped and only the largest ones remain un-
stable. Indeed, we did observe this behavior close the low
Reynolds threshold, as did Fleming et al. (2000) but in an
indirect way (see Figs. 2 and 4 of their paper ), and one can
conclude that these bursts are characteristic of a marginally
unstable MRI. Such bursts may be astrophysically relevant.
Indeed, one may question the MRI behavior close to the
dead zone (Gammie 1996), in which the magnetic Reynolds
number is assumed to be low enough to damp the instability.
If these bursts exist in real disks, they may quickly destroy
this dead zone under the effects of the strong turbulent mo-
tions observed in our simulations.

Let us have a closer look on these bursts with the help
of correlation lengths defined as

Li =

R

dyi

R

f(xi)f(xi − yi)dxi
R

f2(xi) dxi
(26)

where i = 1, 2, 3 is the direction of the correlation and f
refers either to the velocity or magnetic field. Note that with
this definition, the correlation length vanishes for a pure si-
nusoidal signal; therefore, these correlation lengths provide
us with a convenient tool to follow the presence of the chan-
nel flow solution in our simulations. We show on fig. 8 and
fig. 9 the evolution of the correlation length in the y and
z direction for the wx field (a similar behavior is obtained
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Figure 6. β = 100, Re=3200 run

with the other field components). The behavior of correla-
tion lengths closely follows what can be seen by monitoring
the energy in the deviations from the laminar flow (fig. 7),
and indicate the presence of two main regimes in this simula-
tion. The first regime corresponds to an exponential growth
(“burst”) of the channel flow, for which Ly is found to be
equal to the box size and Lz = 0 (a careful examination
shows that Lz is exponentially decaying down to 10−10), in-
dicating the presence of a purely sinusoidal mode in the z
direction in the burst stage. The second regime is a more
classical state for 3D turbulent motion, with Ly ! 0.5 and
Lz ! 0.4. Note that Ly grows on very short time-scales,
leading eventually to a new burst stage.

These correlation lengths also disclose some numerical
artifacts present in the first regime. First, the correlation
length in the y direction is artificially limited to Ly = 1 as a
consequence of the shearing sheet boundary conditions in a
finite box size. In a real disk, one would expect a loss of cor-
relation in the radial direction on a scale of the order of a few
scale heights: indeed, the typical frequency involved in these
phenomena is of the order of the Keplerian frequency and a
signal can’t propagate faster than the sound speed, leading
to a maximum correlation length of a few scale heights.

Similarly, the vanishingly small vertical correlation
length for the channel flow solution is also an artifact of
the adopted boundary conditions. A more realistic result
would follow if one were to take into account the vertical
stratification and set the boundary conditions far from the
disk midplane. More generally, our results are probably not
directly applicable to a real disk, but they shed some light
on what the generic behavior of the MRI would look like
near various stability thresholds, even though different as-
pect ratio and boundary conditions should be investigating
before firm conclusions can be drawn.

Finally, the behavior exemplified in our simulations sug-
gests that assuming α constant would poorly represent the
transport behavior close enough to the marginal stability
limit. Time-dependent transport models are needed in such
a context. Real disks may not operate close to the strong
field limit unless some (unknown) back-reaction loop is at
work, or unless (more realistically) the magnetic field varies
in a systematic way with radius throughout the disk; con-
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Figure 7. β = 30, Re=3200 run
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Figure 8. Correlation length of wx in the y direction as a function
of time, β = 30.

sequently, the bursting behavior observed here may imply
a similar ejection variability in the relevant regions of jet-
driving disks. Note however, that our “mean” equivalent α
is rather large (α ! 5), leading to question of the role of the
ignored fluid compressibility in these cases; it is quite pos-
sible that coupling to compressible modes may effectively
limit the magnitude of the bursts.

3.5 Magnetic Prandtl effect on transport

coefficients

All previously published simulations were performed with-
out exerting numerical control on the dissipation scales and
dissipation processes. However, small scales have an impact
on large scales processes, and therefore on transport effi-
ciency. In this section, the role of the Reynolds and Prandtl
numbers defined in section 3 is examined. In particular, the
Prandtl number allows us to change the ratio of the vis-
cous and resistive dissipation scales. Unfortunately, devia-
tions from Pm = 1 are quite demanding numerically, since
one wants to resolve both the velocity and magnetic dis-
sipations scales. We present on Fig. 10 the result of such
simulations: we plot the mean transport coefficient (α) as a
function of the Prandtl number, for various Reynolds num-
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Figure 9. Correlation length of wx in the z direction as a function
of time, β = 30.
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Figure 10. Prandtl effect for β = 100

bers (the Reynolds number quantifies the viscous dissipa-
tion scale). Statistical averages are computed over 500 shear
times, and start after the first 100 shear times to avoid pol-
lution by relaxation of the initial transient dynamics. From
these plots, one finds a significant correlation between the
Prandtl number and the transport coefficient, leading to

α ∝ Pmδ for



0.12 < Pm < 8
200 < Re < 6400

, (27)

with δ in the range 0.25 — 0.5. Note that this result shows
that the transport coefficient depends on Re and Rm via
Pm, at least in the Pm range concidered in this paper. This
may be seen on Fig. 10 as a small vertical dispersion (vari-
ation of both Re and Rm at constant Pm) compared to
the effect of a single Pm change. Although this section is
the briefest of the paper, this result constitutes the most
important finding of this investigation (and the most com-
putationally intensive one!).

Note that the numerical results obtained at very high
Reynolds number and high Prandtl number are poorly re-
solved, mainly because of a very short magnetic dissipa-
tion scale. This remark may explain that the two points at
Pm = 8 lie somewhat below the mean of the other results.
Our preliminary tests at higher resolution seem to show that
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Figure 11. Linear growth rate of the largest mode for various
(Re, Pm) at β = 100

a higher transport obtains at higher resolution at Pm = 8
and Re = 6400, which confirms a limit due to resolution
in these high Pm runs. This behavior is easily understood,
since the finite numerical resolution enforces a numerical
dissipation scale (roughly equal to the grid scale), which
is obviously the same for the magnetic and velocity fields.
Therefore, at high Pm, the effective magnetic dissipation
scale is forced to be larger than the expected one, leading
to an altered spectral distribution and a smaller “numerical
Prandtl”.

One may wonder if this effect may be correlated to the
linear growth rate studied before. Indeed, we plot the lin-
ear growth rate of the largest mode for the different simu-
lations used for this study on Fig. 11. Note that one gets
similar plots replacing the largest mode growth rate by the
maximum growth rate. Although the idea of a transport ef-
ficiency controlled by the linear growth rate is widely spread
in the Astrophysical community, this plot shows us that, at
least for this example, the linear growth rate doesn’t explain
the transport behaviour observed on Fig. 10. Moreover, it
appears that, as one may suspect from equation (13), the
growth rate is not controlled only by Pm, but also by some
complicated combination of Re and Rm. Umurhan et al.
(2007) tries to get this kind of alpha − Pm correlation an-
alytically, using a weakly non linear analysis of the channel
flow. This study leads to a stronger α−Pm correlation with
δ = 1 in the limit Pm # 1, which appears to be quite differ-
ent from our full 3D numerical results. Therefore, one needs
to find some full nonlinear theory to explain the transport
dependance on Pm.

The correlation observed indicates the existence of a
back-reaction of the small magnetic field scales on the large
ones (at least for the range of Reynolds and Prandtl num-
bers explored here), which enhances the transport on large
scales. Note that this effect is expected to saturate at some
Pm, since in the limit Pm → 0 with Re → ∞ and Rm kept
constant, equation (27) predict a null transport despite of
the existence of the linear instability. Therefore, the exact
implications of these findings remain to be understood, but
may potentially be quite important since the Prandtl num-
ber varies by many orders of magnitude in astrophysical
objects. For example, Brandenburg & Subramanian (2005)
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suggest that values as small as Pm ∼ 10−8 might be found
in young stellar objects, while Pm ∼ 104 would be more
typical of AGN disks. Such a wide span is of course out of
reach of present day computers.

Finally, this kind of back-reaction points out the po-
tential role of small scale physics (dissipation scales) on the
properties of turbulence at the largest available scales (disk
height scale). This argues for a careful treatment of the role
of dissipation and reconnection processes on the turbulence
transport characterization.

4 DISCUSSION

In this paper, we have investigated the role of local di-
mensionless numbers on the efficiency of the dimensionless
turbulent transport. To this effect, we have first general-
ized the previously published linear stability limits, to ac-
count for the presence of both viscous and resistive dissi-
pation. Namely, we have confirmed in all cases that the
large field marginal stability limit is characterized by a
constant plasma β parameter, of order 30 in the shearing
sheet unstratified context (but more likely of order unity
in real, stratified disks). When marginal stability follows
from dissipation and not magnetic tension stabilization, we
have found that the marginal stability limit is captured by
two asymptotic regime: a large Reynolds (Re), small mag-
netic Reynolds one (Rm), with a marginal stability limit
Rm ∼ β1/2, and a small Reynolds, large magnetic Reynolds
number one, where ReRm ∼ 102β1/2. A phenomenological
explanation has been provided for this behavior.

In the previous section, we investigated the behavior of
the MRI near the low β instability threshold; in our simula-
tions, β = 30, a value representative of the large field thresh-
old in our simulation box. In vertically stratified disks, this
threshold obtains for much smaller values, typically β ∼ 1
(Gammie & Balbus 1994). We found, somewhat surprisingly,
that turbulent transport is significantly enhanced through
burst events, even surprisingly close to the marginal stabil-
ity threshold. As pointed out earlier, this behavior is phys-
ical and not numerical. The use of periodic boundary con-
ditions (vertical) or semi periodic (radial) boundary con-
ditions may enhance the role of the channel flow solution
which is responsibly for this behavior, and a real disk chan-
nel flow may break up sooner than observed in our local
simulations, leading to smaller burst magnitudes. Moreover,
α > 1 leads to supersonic motions and compressible numer-
ical simulations are needed to properly quantify the phe-
nomenon, which may exhibit new secondary compressible
instabilities in such a context. All these issues lead to the
conclusion that low β MRI would produce weaker bursts
and therefore smaller transport coefficient than observed in
our simulation. However, there is no physical reason why
the turbulence bursts would be suppressed, and we believe
that these bursts may be a strong signature of regions of
stratified disks where MRI-driven turbulence is driven close
to the marginal stability threshold.

The most important new result reported in this paper
is a correlation between the transport efficiency, and the
magnetic Prandtl number, leading to a higher transport co-
efficient for larger Prandtl numbers. As in the case of the
bursting behavior discussed above, the boundary conditions

used in these simulations play some role in the result. How-
ever, the possible biases are less obvious and tests with plane
radial walls need to be performed to get a grasp on bound-
ary condition effects. Moreover, one needs to check the cor-
relation at higher resolutions, and if possible higher Prandtl
numbers, using different kind of codes to get a better char-
acterization and a physical description of the phenomena
involved in this observation.

More specifically, a puzzling fact points towards a po-
tential bias due to the shearing sheet boundary conditions.
In non-magnetized shear flows, transport in the subcritical
regime, far enough from the marginal stability limit scales
like 1/Rg where Rg is the subcritical transition Reynolds
number (Lesur & Longaretti 2005). Closer to the marginal
stability limit, and in the supercritical regime (e.g., when
the Rayleigh stability criterion is not satisfied), transport is
enhanced with respect to this scaling, but one always has
α < 1/Rc where Rc is the critical Reynolds number of lin-
ear instability. However, for MRI-driven turbulence, one has
α > 1/Rc, as can be checked from our results. Close to the
marginal stability limit, this enhanced efficiency is related
to the existence of the channel flow solution, as discussed
above. As each linear mode is a nonlinear solution to the in-
compressible problem, one may ask whether this enhanced
transport, which is observed also far from the marginal sta-
bility limit, is not an artifact of the shearing sheet bound-
ary condition, which allows such nonlinear coherent modes
to develop. This behavior is not necessarily unphysical or
irrelevant to actual disk systems, but this point needs to be
checked in the future.

Finally, let us come back to the magnetic Prandtl num-
ber behavior. As pointed out earlier, the dependence of the
transport efficiency on the magnetic Prandtl number indi-
cates a back-reaction of small scales on large ones. We make
here a few comments on this feature. The magnetic Prandtl
number is related to the ratio of the viscous lν and resistive
lη dissipation scales, the exact relation depending on the
shape of the turbulent energy spectrum. Generally speak-
ing, the Prandtl number varies monotonically with the ra-
tio lν/lη, and one expects Pm " 1 (resp. Pm # 1) when
lν/lη " 1 (resp. lν/lη " 1). The spectrum of the largest
scales tends to be flatter than usual turbulent spectra due
to the role of the linear instability, down to the scale where
the magnetic tension prevents the instability to occur (most
probably, this “instability section” of the spectrum only rep-
resents a small part of the overall turbulent spectra of actual
disks, because of their enormous Reynolds numbers). Leav-
ing aside these largest scales, for Pm " 1, the spectrum
is expected to be Kolmogorovian and anisotropic down to
the resistive dissipation scale (Goldreich & Sridhar 1995),
while below this scale and down to the viscous scale, the ve-
locity spectrum is the usual Kolmogorov velocity spectrum
and the magnetic spectrum drops much faster. On the other
hand, for Pm # 1, the spectrum should be Kolmogorovian
down to the viscous dissipation scale (Goldreich & Sridhar
1995), while the magnetic spectrum should scale like k−1 be-
low the viscous dissipation scale and down to resistive scale
(Cho et al. 2003). It is therefore tempting to see in a differ-
ence of accumulation of magnetic energy at small scales the
cause of the back-reaction of these scales to the largest ones,
which would create the observed magnetic Prandtl number
dependence of the turbulent transport efficiency. Neverthe-
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less, in both small and large Prandtl number settings, tur-
bulent motions in the inertial range are random in phase, so
that one expects that to lowest order, coupling of the turbu-
lent spectrum with the largest MRI unstable scales vanishes.
To next order, the steepness of the Kolmogorov spectrum
indicates that the strength of the coupling decreases with
increasing Reynolds number in the vicinity of the viscous
dissipation scale, suggesting that at large enough Reynolds
number, the Prandtl dependence should saturate, especially
on the large Prandtl number side. Such a saturation was not
observed in our simulations, although a weak dependence of
our results on the magnitude of the Reynolds number may
be detected on Fig. 10; however, such an effect might also
arise from resolution requirements, which makes our lower
Reynolds number results confined to the larger Prandtl num-
ber range. Unfortunately, our results can hardly be improved
upon with the present generation of computers, leaving the
question of the Reynolds number saturation of the Prandtl
number dependence open, as well as the overall difference
in transport efficiency between the small and large Prandtl
number cases. Resolving this issue is crucial to ascertain the
role of the magneto-rotational instability in disk transport.
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Ogilvie, and John Papaloizou.

REFERENCES

Arlt R., Urpin V., 2004, A&A, 426, 755
Balbus S. A., 2003, ARA&A, 41, 555
Balbus S. A., Hawley J. F., 1991, ApJ, 376, 214
Balbus S. A., Hawley J. F., 2003, in Falgarone E., Passot
T., eds, LNP Vol. 614: Turbulence and Magnetic Fields in
Astrophysics Numerical Simulations of MHD Turbulence
in Accretion Disks. pp 329–348

Balbus S. A., Hawley J. F., Stone J. M., 1996, ApJ, 467,
76

Balbus S. A., Terquem C., 2001, Astrophys. J., 552, 235
Blaes O. M., Balbus S. A., 1994, Astrophys. J., 421, 163
Brandenburg A., Nordlund A., Stein R. F., Torkelsson U.,
1995, ApJ, 446, 741

Brandenburg A., Subramanian K., 2005, Phys. Rep., 417,
1

Cho J., Lazarian A., Vishniac E. T., 2003, ApJ, 595, 812
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