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Talk outline
• Introduction 

• Short and easy (3h) 

• Setting the stage 
• Not too long and “straightforward” (4h) 

• Small scale dynamos  
• Long and difficult* (6h) 

• Large-scale dynamos  
• Just a tad shorter and less difficult* (4h) 

• Connections between the two 
• Short and controversial (2h) 

• Instability-driven dynamos 
• Short and seemingly easier, but actually difficult* (2h) 

• Collisionless plasma dynamo 
• Short and a bit crazy** (1h)
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*including for the lecturer
**including the lecturer
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What is dynamo theory about ?
• The origin, and sustainment, of magnetic fields in the universe 

• on the Earth, other planets and their satellites (“planetary magnetism”) 

• on the Sun and other stars (“stellar magnetism”) 

• in galaxies, clusters and the early universe (“cosmic magnetism”) 

• Understanding their structural, statistical, and dynamical properties 

• Addressing important physics (and maths) problems 
• Deep connections with hydrodynamic turbulence and more generally                  

turbulent transport problems 

• Coming up with “useful stuff” for experimentalists and observers 
• Warning: people have strong disagreements on the definition of “useful stuff”
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The fluid/plasma dynamo conundrum 
• Most astrophysical bodies, and many planetary interiors, are  

• in an electrically conducting fluid (MHD) or weakly-collisional plasma state  

• in a turbulent state 

• (differentially) rotating: shearing, Coriolis and precessing effects 

• Main questions 
• Can flows of electrically conducting fluid/plasma amplify magnetic fields ? 

• What are at the time and spatial scales on which this happens ? 

• At what amplitude do they saturate ? What field structure is produced ? 

• A complex and multifaceted problem 
• Requires observations, phenomenology, theory, numerics and experiments
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A touch of history
• Self-exciting fluid dynamos will soon be a century-old idea 

• First invoked by Larmor in 1919 (sunspot magnetism)  

• The idea took a lot of time to gain ground 
• Cowling’s antidynamo theorem (1933) 
• First examples in the 1950s (e.g. Herzenberg dynamo) 
• Parker’s solar dynamo phenomenology (1955)  

• Mathematical theory 
• Alpha effect / mean-field: Steenbeck, Krause, Raedler 1966, Moffatt, Roberts etc. (1970s) 
• Small-scale dynamo theory: Kazantsev 1967, Kraichnan, Zel’dovich et al. (70s-80s) 

• Numerical and experimental era 
• Numerical evidence of turbulent dynamos: Meneguzzi et al. 1981, flourishing since then 
• Experimental evidence: Riga, Karlsruhe (~2000), VKS (2007), plasma underway (2005+) 
• Great observational radio and spectro-polarimetric prospects too (stellar, galactic, cosmo)
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Solar magnetism

7 [Credits: Hinode/JAXA]

[Credits: SOHO/NASA]

Global solar cycle dynamics

Small-scale surface dynamics
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Planetary magnetism
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[HST/NASA][Swarm/ESA]

Earth’s magnetic field (2014) Jupiter Auroras
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Galactic magnetism

9 [Beck et al. VLA/Effelsberg]

M51 magnetic field

[Planck/ESA]

Galactic magnetic field



Galaxy clusters and cosmic magnetism
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Takeaway phenomenological points
• Many astrophysical objects have global, ordered fields 

• Differential rotation, global symmetries and geometry important 

• Coherent structures and MHD instabilities may also be very important 

• Motivation for the development of “large-scale” dynamo theories 

• Lots of “small-scale”, random fields also discovered from the 70s 
• These come hand in hand with global magnetism 

• Simultaneous development of “small-scale dynamo” theory  

• Astrophysical magnetism is in a nonlinear, saturated state  
• Linear theory likely not the whole story (or requires non-trivial justification) 

• Multiple scale interactions expected to be important

11
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Mathematical formulation
• Compressible, viscous, resistive MHD equations
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Magnetic field energetics
• Magnetic energy equation 

• Magnetic field is generated at the expense of kinetic energy 

• Simple but enlightening local equation (ideal MHD)
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Conservation laws in ideal MHD
• Alfvén’s theorem(s) 

• Magnetic field lines are “frozen into” the fluid  just as material lines 

• Magnetic flux through material surfaces is conserved 

• Magnetic helicity                              conservation 
• A measure of magnetic linkage / knottedness
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Simplest MHD system for dynamo theory
• Incompressible, resistive, viscous MHD 

• Captures a great deal of the dynamo problem 

• Often paired with simple periodic boundary conditions 
• Problematic in some cases (more later)
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Scales and dimensionless numbers
• System/integral scale  ℓ0, U0 
• Fluid system with two dissipation channels 

• Dimensionless numbers: 

• Kolmogorov viscous scale  ℓν  ~ Re-3/4  ℓ0 , uν  ~ Re-1/4  U0 

• Magnetic resistive scale  ℓη  (Pm-dependent) 

• Another important dimensionless quantity 

• Eddy turnover time 𝜏NL ~ ℓu/u 

• Flow/eddy correlation time 𝜏c
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The magnetic Prandtl number landscape
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Large magnetic Prandtl numbers 
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• Pm > 1: resistive cut-off scale is smaller than viscous scale 
• In Kolmogorov turbulence, rate of strain goes as ℓ-2/3 

• Viscous eddies are the fastest at stretching B: uν / ℓν ~ Re1/2  U0 / ℓ0 

• To estimate the resistive scale ℓη, balance stretching by these                             
eddies ~ uν/ℓν with ohmic diffusion rate η/ℓη2
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Low magnetic Prandtl numbers
• Pm < 1: resistive cut-off falls in the turbulent inertial range 

• To estimate the resistive scale ℓη, balance magnetic stretching by the          
eddies at the same scale ~ uη/ℓη, with diffusion η/ℓη2  

• i.e., Rm (ℓη) = u(ℓη) ℓη / η ~ 1 
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Dynamo fundamentals
• The problem of exciting a dynamo is an instability problem 

• Growth requires stretching to overcome diffusion (measured by                    )  

• Kinematic dynamo problem: 
• Find exponentially growing solutions of the linear induction equation                      

(velocity field is prescribed) 

• Dynamical problem considers effects of Lorentz force on  
• Saturated state of kinematic dynamos: non-linear magnetic back reaction 

• Subcritical scenarios: e.g. joint excitation of u and B via MHD instabilities 

• Slow vs Fast 
• A dynamo is slow/fast if its growth rate does/doesn’t vanish as 
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Cowling’s antidynamo theorem
• Axisymmetric dynamo action is impossible [Cowling, MNRAS, 1933] 

• In polar geometry, write 

•   

•   

• Poloidal flow can only redistribute flux so    must decay ultimately 

• As     decays, so must the toroidal field 

• Note: only applies if u and B share the same symmetry axis
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Antidynamo theorems and their implications

• Many other antidynamo results can be proven 

• Plane two-dimensional motions cannot sustain a dynamo                                        
[Zel’dovich’s theorem, JETP 1957] 

• A purely toroidal flow cannot sustain a dynamo 

•                  cannot be a dynamo field 

• Dynamos are only possible in “complex” geometries or flows 

• An extra burden for both theory and numerics 

• A popular “minimal” configuration is 2.5D (or 2D-3C) 

•              with all three components non-vanishing 
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The fast dynamo paradigm
• Chaotic stretching, twisting, folding and merging of field lines 

• For small diffusion, field doubles at each “iteration” (characteristic time) 
• Exponential growth with “ideal” growth rate                  ~ stretching rate
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Numerical evidence

• Homogeneous, isotropic, non-helical, incompressible, 3D 
turbulent flow of conducting fluid is a small-scale dynamo

26

64x64x64 spectral DNS simulations at Pm=1 

[Meneguzzi, Frisch, Pouquet, PRL, 1981]
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Zel’dovich phenomenology
• Consider incompressible, kinematic dynamo problem  

• Assume that  
• has finite total, energy, no singularity 

•   

• Take simplest possible model of time-evolving “smooth” velocity field 

• Random linear shear:
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Stretching and squeezing
• Evolution of vector connecting 2 fluid particles: 

• Consider constant 
• Exponential stretching along first axis 

• In ideal MHD, we thus expect 
• However, perpendicular squeezing implies that even a tiny magnetic 

diffusion matters…is growth still possible in that case ?
28
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Magnetic field evolution
• Decompose   

• Diffusive part of evolution ~ 
• super-exponential decay of most Fourier modes because 

• survivors live in an exponentially narrow cone of modes such that                                  

• rope case:
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Magnetic field evolution (ropes)
• Surviving modes at time t have an initial field 

•   

• This field is stretched along the first axis, so 

• Now, estimate the magnetic field in physical space
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Magnetic energy evolution (ropes)
• What about magnetic energy ? 

• Similar conclusions apply in the pancake case, but 
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Generalization to random, time-dependent shear

• Renovate shear flow every time-interval 𝜏 

• Succession of random area-preserving stretches and squeezes 

• Introduce the matrix                          such that  

• Volterra multiplicative integral form: 

• Formal solution 

• Hard work: calculate the properties of the multiplicative integral !
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Lyapunov basis of random shear flow
• Zel’dovich showed that the cumulative effects of any random 

sequence of shears can be reduced to diagonal form 
• In particular there is always a net positive “stretching” Lyapunov exponent 

• The underlying Lyapunov basis  
• is a function of the full random sequence, but is independent of time 

• “cristallizes” exponentially fast in time (exponents converge as 1/t) 

• The problem reduces to that described earlier 
• Magnetic energy growth is possible in a smooth, 3D chaotic velocity field               

in the presence of magnetic diffusion
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Small-scale dynamo fields at Pm ≥ 1
• Pm=Rm=1250, Re=1 [from Schekochihin et al., ApJ 2004] 

• Folded field structure  
• Reversals at resistive scale 

• Folds coherent over flow scale 

• Field strength and curvature anticorrelated

34
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• Yes, but much harder 
• Critical Rm~200 

• More complicated than                 
Zel’dovich picture

Small-scale dynamo at low Pm

35

Pm=0.07, Re=6200, Rm=430

Pm=1, Re=440, Rm=440

Pm=1250, Re=1, Rm=1250

[Iskakov et al., PRL 2007]
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Introduction to Kazantsev-Kraichnan
• Consider again the following kinematic dynamo problem: 

• This problem can be solved analytically if u is 
• a random Gaussian process with no memory (zero-correlation time) 

• The so-called Kraichnan ensemble 

• Obviously, not your usual turbulent flow, but still… 
• Very useful to understand the properties of small-scale dynamo modes 

• Originally solved by Kazantsev [JETP, 1968]                                                            
[and further explored by Zel’dovich, Ruzmaikin, Sokoloff, Vainshtein,                                                  
Kitchatinov, Vergassola, Vincenzi, Subramanian, Boldyrev, Schekochihin etc.]
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Basic assumptions on the velocity
• 3D, statistically steady, homogeneous  

• Gaussian 
• pdf 

• Covariance matrix  

• Vanishing correlation time: 

• Isotropic and non-helical: 

• Incompressible:
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Equation for the magnetic correlation
• Goal: derive a closed equation for the two-point, single time 

magnetic correlator [or equivalently magnetic spectrum] 

• Induction equation at (x,t) and (x’,t) gives
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Closure procedure in a nutshell
• Velocity field is Gaussian, so we use the Furutsu-Novikov                

formula [Gaussian integration] 

• Reduction into integrals of products of second order moments only, e.g. 

• The time integral can be done thanks to vanishing correlation                   
time assumption 

• Functional derivatives are computed from formal solutions of the           
induction equation, e.g. 

• The space integrals become easy, as the functional derivatives               
introduce               and                                       
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The closed equation
• Using the appropriate projection operators, the problem       

reduces to a closed equation for the scalar function 

• Schrödinger equation with imaginary time 
•  Change variables: 

• Wave function of quantum particle of variable                     in potential
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Solutions

• Look for solutions of the form 
• Growing dynamo modes correspond to discrete bound states: E<0 

• Variational result: 

• To determine whether dynamo takes place, we can equivalently solve  

• The ground state describes the long-time asymptotics
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Different regimes
• Recall                             

•  So                                              is akin to a turbulent diffusivity  

• Consider the scaling law   
• Smooth flow:                                         [“large Pm”] 

• “Kolmogorov” turbulence:                                                            [“low Pm”] 

• Potential as a function of 
•    
•       

• Growing bound modes for           
• includes both Pm >> 1 and Pm << 1  [“K41”] regimes
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Finite Rm effects
• Introduce an integral scale     beyond which u decorrelates 

• Finite scale separation  

• Potential asymptotics 
•   

•   

•                                         repulsive 

• Existence of potential well depends on how large          is 
• Critical Rm for the dynamo below which diffusion wins over stretching 

• Applies to all dynamo velocity fields (          )  and Prandtl numbers
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A few interesting results at large Pm
• Consider the so called Batchelor regime 

• The magnetic field is stretched and advected by a viscous flow 

• The velocity field is smooth: 

• Spectral view at scales much smaller than the viscous scale 
• Work under Kazantsev-Kraichnan assumptions 

• Fokker-Planck type equation for the magnetic spectrum M(k) 

• Typical growth rate of the order of the shearing rate at viscous scales
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Diffusion-free regime
• Magnetic diffusion negligible if magnetic field only has 

• If we excite a given k0 initially, the spectrum spreads towards small-scale  

• The energy of each mode grows at rate           

• Total energy grows at rate      as the number of excited mode also grows 

• The magnetic field develops the so-called         Kazantsev spectrum 
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Resistive regime
• After the spectrums hits           , the long-time asymptotics is 

• The spectrum peaks at the resistive scale [falls off exponentially beyond] 

• The asymptotic total energy growth rate is now also                                         
[Hidden subtleties: weak dependence of the actual growth rate on boundary condition at small k]
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Magnetic pdf in the diffusion-free regime
• Introduce the characteristic function 

• This function is the Fourier transform in B of the p.d.f. 

• Use the ideal induction equation in the Lagrangian frame 

• The equation is closed using the same tricks as before
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Magnetic pdf in the diffusion-free regime
• Fokker-Planck equation for the pdf 

• Fourier transform back in   , using 

• Simplifies in the isotropic case as 1D diffusion equation with drift  

• Lognormal solution 

• The magnetic field is strongly intermittent 

• Magnetic moments grow as
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Saturation of small-scale dynamo
• As B gets large-enough, Lorentz force saturates dynamo 

• What is “large-enough “? 

• How does it work ? 

• Historical ideas 
• Batchelor argument [PRSL,1950]:  

• magnetic field is similar to hydrodynamic vorticity 

• should peak at viscous scale, hence saturation for  

• Schlüter-Biermann argument [Z. Naturforsch.,1950]:  

• equipartition at all scales
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Saturation phenomenology
• Geometric structure and orientation of the field matters 

• Magnetic tension                encodes magnetic curvature 

• Reduction of stretching Lyapunov exponents 

• A field realization can only saturate itself 

• Saturation at low Pm  
• Pretty much Terra incognita (no published simulation)
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Large Pm phenomenology
• Plausible (but not definitive) scenario from simulations                                                     

[Schekochihin et al., ApJ 2002, 2004] 

• Lorentz force first suppresses stretching at viscous scales 

• From there, slower, larger-scale eddies take over stretching 

• B keeps growing and acts on increasingly more energetic eddies… 

• Secular growth regime: 

• Final state:                        after “suppression” of full inertial range 

• “Isotropic MHD turbulence”, folded structure is preserved 

• P[B] not log-normal anymore (likely exponential)
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Differential rotation: the Omega effect
• Shearing of magnetic field by differential rotation (shear) 

• In polar geometry, consider the initial axisymmetric configuration 

• a purely poloidal magnetic field: 

• a toroidal, shearing velocity field (differential rotation):                                   

• On short times,       can grow linearly in time 

• Ultimately, diffusion always dominates 

• This effect alone cannot not produce a dynamo (Cowling) 
• But it can transiently make strong toroidal field out of weak poloidal field
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Turbulence: Parker’s mechanism
• Effect of a localized cyclonic swirl on a straight magnetic field 

• In polar geometry, this mechanism can produce axisymmetric poloidal field out                 
of axisymmetric toroidal field — and the converse 

• Kinetic helicity in the swirl is essential   

• This “alpha effect” can mediate statistical dynamo action 
• Ensemble of turbulent helical swirls should have a net effect of this kind 

• Cowling’s theorem does not apply as each swirl is localized (“non-axisymmetric”)
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Numerical evidence
• Small-scale helical turbulence can generate large-scale field 

• Critical Rm is O(1), lower than that of the small-scale dynamo 

• Helicity seemingly key for large-scale dynamos (but see later)
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[Meneguzzi et al., PRL 1981 — again !]
[Brandenburg, ApJ 2001]
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Twisting and magnetic helicity

• Assume conservation of magnetic helicity (up to resistive effects) 
• Systematic twisting produces  

• negative large-scale magnetic helicity  
• positive small-scale magnetic helicity 

• Consequences  
• Interpretation of large-scale helical dynamo as “inverse transfer” of helicity 
• Transfer of helicity at small scales
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Mean-field approach
• Incompressible, kinematic problem with uniform diffusivity 

• Split fields into large-scale              and fluctuating part 

• To determine the evolution of     we need to know 
• We cannot just sweep fluctuations under the rug: closure problem
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Mean-field approach

• Assume linear relation between     and      
• Expand 

• Simplest pseudo-isotropic case:                    ,                        

• For          , we obtain a closed “    “ dynamo equation 

• Exponentially growing solutions with real eigenvalues 

• Max growth rate                               at scale
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Mean-field dynamo with Omega effect
• Add large-scale differential rotation to MF equation:  

• Growing, oscillatory solutions leading to field reversals: Parker waves 

• This is called the         dynamo (         if     acts both ways)  

• Remarks 
• Many other couplings possible: pumping effects, non-diagonal terms etc. 

• 3Dness of the dynamo is hidden in mean-field coefficients
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Calculation of mean-field coefficients
• We only know how to calculate     and     perturbatively for 

• small correlation times (low Strouhal number             , random waves) 

• low magnetic Reynolds number 

• In both cases we can justify neglecting the tricky term 
• First Order Smoothing Approximation (FOSA, SOCA, Born, quasilinear…)
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Calculation of mean-field coefficients
• Let’s see how the calculation for 

• Neglecting the tricky term and assuming small resistivity,  

• For slowly varying      and short-correlated velocities, this simplifies as 

• The role of kinetic helicity is explicit  

• At low Rm, we have the similar result
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Dynamical regime of large-scale dynamos

• When B gets “large enough”, the Lorentz force back-reacts 
• Big questions: what happens then, and what is “large-enough” ? 

• Equipartition argument: saturation when                          , but 

•     and     have very different scales 

• Large-scale dynamos alone produce plenty of small-scale field 

• Equipartition of small-scale fields:             , with   
• Not very astro-friendly:                                       for p=O(1) 

• Possibility of “catastrophic” alpha quenching
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The quenching issue
• Physical origin of quenching “vigorously” debated: 

• Magnetized fluid has “memory”: possible drastic reduction of statistical 
effects compared to random walk estimates [see review by Diamond et al., 2005] 

• Magnetic helicity conservation argument: 

• in “closed” systems, large-scale field can only reach equipartition                   
on slow, large-scale resistive timescales [e.g. Brandenburg, ApJ 2001] 

• Possible way out of problem is to evacuate magnetic helicity                              
[Blackman & Field, ApJ 2000; see discussion by Brandenburg, Space Sci. Rev. (2009)] 

• Requires open boundary conditions (periodic b.c. not ok) 
• Requires internal fluxes of helicity [Kleeorin et al., Vishniac-Cho etc.]
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Transitional (yet important) remarks 

• Historically, mean-field models have been at the core of modelling of 
• solar and stellar dynamos — “alpha” provided by cyclonic convection 
• galactic dynamos — “alpha” provided by supernova explosions 

• But classical mean-field theory faces strong limitations 

• Astro turbulence typically has                       and 

• “Co-existence” with fast, small-scale dynamo for    
• pain in the neck term exponentially growing…then what ? 
• linear relation between     and      doubtful 

• Large-scale dynamos are “real” — independently of our limited theories 

• We have to think harder ! (and ask good questions to computers)
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Large-scale dynamos with Kasantsev
• Consider turbulence with net helicity 

• Add a mirror symmetry-breaking term to the correlators 

•             asymptotics of model gives mean-field       equation 

• Full calculation leads to coupled equations for       and
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Self-adjoint spinorial form

• Therefore, the generalized helical case can be diagonalized 

• Bound “small-scale” modes: 

• Free “mean-field” modes:
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Growing helical modes
• Helicity allows growing large-scale                                                         

modes 

•   

• Bound modes (         ) dominate the                                                        
kinematic stage 

• As               , their spectrum peak shifts                                                        
towards that of “mean-field” modes 

• Further hints that quantitative large-scale dynamo theory             
should factor in the small-scale dynamo
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• Large-scale dynamos at largish Rm now 
observed numerically 

• Galloway-Proctor flow + Shear                                                                      
[Tobias & Cattaneo, Nature 2013] 

• “Suppression” principle: shear                                                                              
turns off small-scale dynamo 

• Turbulent convection + differential rotation                               
[Hotta et al., Science 2016] 

• Small-scale dynamo                                                                                                                                                                           
reduces turbulence 

• Asymptotic behaviour unclear 

• Dynamical theory still terra incognita 
• Boldyrev’s model of large Pm      dynamo [ApJ, 2001]

Order out of chaos ?

69

Helicity + No shear (Rm=2500)

No helicity + Shear

Helicity + Shear

Lowish Rm

Medium Rm

High Rm

↵2



Les Houches, May 2017

One last (lack of) twist
• Large-scale dynamo action is possible without net helicity 

• The shear dynamo:                 + non-helical small-scale turbulence  

• Mean-field description in terms of “WxJ” effect [Kleeorin & Rogachevskii] 

• “Incoherent” alpha effect [Silant’ev 2007, Proctor 2007, Brandenburg 2008], etc. 

• Recent developments [Squire & Battacharjee, PRL 2015] 

• Saturated small-scale dynamo in a shear flow can lead to large-scale dynamo
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A few words on “test field”-like methods
• Pragmatic strategies have been devised for “astrophysical applications” 

• postulate generalised mean-field form for            (convolution integrals) 

• Measure effective transport coefficients in local simulations 

• Use the results in simpler 2D mean-field models  

• Such procedures 
• produce converged values of transport coefficients 

• reproduce exact results in perturbative kinematic limits 

• TFM-based modelling may be useful, but:  
• no rigorous justification as to why it should be accurate/appropriate (Rm>>1 !) 

• dynamical, tensorial convolution relations            can fit complex dynamics,                        
but could well be degenerate with more physically-grounded nonlinear models 

• it can obfuscate the underlying physics, e.g. when MHD instabilities are involved
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Instability-driven dynamos
• Many astrophysical systems 

• host differential rotation: i.e. there is a background shear flow 
• are prone to non-axisymmetric MHD instabilities 

• This can lead to specific nonlinear forms of dynamo action  
• Analogous to self-sustaining nonlinear process in hydro shear flows  
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“Solar-like” magnetic buoyancy dynamo
• Shear + Magnetic buoyancy + Kelvin-Helmholtz 

• Coherent, strongly chaotic dynamo action 

• Strongly nonlinear EMF / field relationship
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[Cline et al., ApJ 2003]
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Accretion disk dynamo
• Keplerian shear flow turbulence is thought to be MRI-driven 

• Possible even in the absence of net                                                                  
magnetic flux [Hawley et al., ApJ 1996] 

• Characterised by dynamical                                                    
reversals of large-scale field 
• Non-axisymmetric MRI of toroidal                                                                    

field critical (magnetic buoyancy) 
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[Herault et al., PRE 2011]

[Lesur & Ogilvie, A&A 2008][Davis et al., ApJ 2010]
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From subcritical to statistical
• Such dynamos are subcritical / essentially nonlinear 

• “Egg and chicken” problem 

• Non-axisymmetric instability growth requires large-scale field 

• Large-scale field sustainement rests on non-axisymmetric instability  

• Non-axisymmetric    ,     jointly excited by instability: Lorentz force essential  

• Implications 
• No kinematic stage, homoclinic bifurcations 

• Nonlinear EMF/field relationship 

• Statistical theory relevant but difficult   
• Mean-field approach controversial
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ũ B̃

[Riols et al., A&A 2017]



Plasma dynamo
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What about weakly collisional plasmas ?
• Some high-energy astrophysical plasmas are not MHD fluids 

• Intracluster medium, hot accretion flows, primordial plasma (?) 

• What happens to dynamos ? 
• Implications for magnetogenesis 

• “Pathfinding” for experiments 

• Coupling of processes 
• Fluid: stirring, fluid instabilities                                                               

(convection, MRI etc.) 

• Kinetic: collisionless damping,                                                                                              
magnetization effects
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4 Fabian et al

Figure 3. Matching X-ray and optical images of the core of the Perseus cluster Left: Chandra composite (from Fig. 2, but without subtraction of the mean
at each radius); Right: optical from Blackbird Observatory (see text for details). The images are 11.8 arcmin from N to S. NGC 1272 is the bright elliptical
galaxy 5 arcmin WSW of NGC 1275.

Figure 4. Joint Chandra and XMM image.

and are trapped at some radius, in this case at about 220 kpc. Per-
haps they become neutrally buoyant there due to mixing with sur-
rounding gas, or the magnetic structure (possibly azimuthal there;
Quataert et al 2008) traps them. There also seems to be an overall
structure at and just within that radius to the W, possibly due to mo-
tion of the core relative to the outer cluster gas (see e.g. Churazov
et al 2003).

The two X-ray surface brightness dips to the SW of the trough
(Figs 9 and 10), which we identify as rising bubbles, have volumes
of approximately 104 kpc3 each, corresponding to about twice that
of the current inner bubbles.

The bay to the South may result from the accumulation of
Southward rising bubbles in analogy to the Northern trough. It has a
sharp, curved Northern edge and the interior is hotter than the outer
parts (Fig. 11). Perhaps there has been some mixing and heating
taking place between the relativistic and thermal intracluster gases.
It lies much closer to the nucleus of NGC1́275.

The evolution of rising bubbles in cluster gas has been stud-
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Figure 5. Surface brightness profile in the 0.5–7 keV band to the West of
the nucleus of NGC 1275.

ied and simulated by many authors (e.g. Diehl et al 2008; Liu et
al 2008). Bubbles blown by a jet are not Rayleigh-Taylor unsta-
ble because the upper surface of the bubble is not at rest relative
to the hot gas above them. The expansion of the bubbles means
that the hot gas continuously flows around them. The growth time
of the Kelvin-Helmholtz instability is comparable to the flow time.
Whether they break up or not depends on the amplitude and scale
of velocity perturbations in the hot gas. The stability of a large gas
bubble rising through liquid has been studied by Batchelor (1987).
Rising air bubbles in water can be surprisingly large. The scale size
of disruptive perturbations depends on surface tension (which in

c� 0000 RAS, MNRAS 000, 000–000

Lturb ~ 20 kpc

λe ~ 1 kpc (1016-17 km)

Pressure scale Height ~ 100 kpc  (1017-18 km)

Fabian et al., MNRAS 2011

Larmor radii ~ 104 km
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Pressure anisotropy generation
• In a magnetized, weakly collisional plasma 

• The pressure is an anisotropic tensor with respect to the direction of B 

•                               is almost conserved 

• Large-scale, field-stretching motions generate pressure anisotropy 
• Collisions tend to relax it
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•                      conservation implies kinetic instability everywhere 
• local increase of |B| —> increase of p⊥ 

• mirror instable  

• local decrease of |B| —> decrease of  p⊥ 

• firehose instable  

• Small, fast scales                    
• ICM: 𝝆i ~ 104 km, 𝛺i-1 ~ second 

• Feedback non-linearly on “fluid” scales
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[Kunz et al., PRL 2014]

Bale et al.,  
PRL 2009

Pressure anisotropy-driven instabilities

[Scheckochihin et al, ApJ 2005, Schekochihin et al., PRL 2008; 
Rosin et al., MNRAS 2011; Rincon et al., MNRAS 2015] 
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So what happens to dynamos ?
• The most efficient eddies are the smallest, fastest ones 

• In the ICM, such plasma motions are weakly collisional 

• Plasma is magnetised well below equipartition (ICM: 10-13 G) 
• Field-stretching motions (= dynamo !) generate pressure anisotropy 

• Pressure-anisotropy driven instabilities !
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Collisionless plasma dynamo problem(s)
• Unmagnetized problem: 

• Is a collisionless, unmagnetized 3D chaotic flow of plasma a good dynamo ? 

• Magnetized problem: 
• How do pressure-anisotropy kinetic instabilities interfere with magnetic growth ? 

• Annoying “details” 
• Dynamo is a fundamentally 3D process in physical space (Cowling) 

• No rigid “guide” field here: kinetic description “3V” in velocity space 

• Modelling requires 3D-3V simulations (+time integration !) 
• Very costly: O(106-107 CPU hours) per simulation 

• Use simplest possible appropriate kinetic model
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⇢i/L < 1
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Unmagnetized regime
• Four simulations with same initial field and flow history, but 

different magnetic diffusivity 𝜂
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Unmagnetized regime: growing case
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Exploring the magnetization transition
• Four simulations with same resistivity and input power, but 

different initial values of 𝛽 

• Magnetic growth appears to self-accelerate
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Magnetized regime
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� = 104
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Magnetized regime
• Firehose instability in strong-field curvature regions 

• Bubbly mirror fluctuations in field-stretching regions
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Tomorrow’s fundamental theory challenges
• Turbulent large and small-scale dynamos  

• Unified, self-consistent nonlinear multiscale statistical dynamo theory 

• Requires physically justified closures  

• Description of asymptotic regimes (very high Re and Rm, low Pm, strong rotation) 

• Interactions with different physical processes and geometrical effects 
• MHD instabilities combined to shear (magnetic buoyancy, MRI etc.) 

• Coherent structures (vortices, zonal flows, convection columns, tangent cylinders) 

• Plasma effects (batteries, pressure anisotropies, partial ionization etc.) 

• Reconnexion 

• History of cosmic magnetism 
• from the pre-CMB era to stellar and planetary magnetic fields
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