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I.	PLASMAS	AS	FLUIDS	



ObservaConal	Evidence	

•  It	is	esCmated	that	more	than	99.9	%	of	maSer	in	the	
Universe	exists	in	the	form	of		plasma;	

•  A	plasma	is	a	ionized	gas		where	charged	parCcles	interact	
via	electromagneCc	forces	(electric	and	magneCc	fields);	

•  Examples	include	stars,	nebulae,	galaxies,	supernovae,	
interstellar/galacCc	medium,	jets,	accreCon	disks,	etc..	

•  Our	knowledge	limited	by	what	we	can	actually	observe	à	
emi8ng	plasma.	



From	KineCc	to	Fluid	to	MHD		
•  Vlasov	/	Fokker	Plank	describes	the	Cme	evoluCon,	

in	phase	space,	of	the	plasma	distribuCon	funcCon	
f(x,v,t):	

•  Two-fluid	model		(ions	&	electrons)	derived	by	
integraCng																											over	velocity	space	and	
taking	moments	of	increasingly	higher	order.	

•  A	one	fluid	model	is	derived	by	proper	average	of	
the	ions	and	electrons	fluid	equaCons.	

•  Magnetohydrodynamics	(MHD)	is	a	further	
simplificaCon	of	the	one	fluid	model.			

Vlasov	

Two-fluid	

One-fluid	

MHD	

Small	scales,		
high	frequency	

Large	scales,		
low	frequency	



Validity	of	Fluid	approximaCons	
•  The	fluid	approach	treats	the	system	as	a	conGnuous	

medium	and	considers	the	dynamics	of	a	small	volume	of	
the	fluid.		

•  Meaningful	to	model	length	scales	much	greater	than	mean	
free	path	or	individual	parCcle	trajectories.			

•  “Fluid	element”:	small	enough	that	any	macroscopic	
quanCty	has	a	negligible	variaCon	across	its	dimension	but	
large	enough	to	contain	many	parCcles	and	so	to	be	
insensiCve	to	parCcle	fluctuaCons.		

•  Fluid	equaGons	involve	only	moments	of	the	distribuCon	
funcCon	relaCng	mean	quanCCes.	Knowledge	of	f(x,v,t)	is	
not	needed*.		

	
•  SCll:	taking	moments	of	the	Vlasov	equaCon	lead	to	the	

appearance	of	a	next	higher	order	moment	à	“loose	end”	
à	Closure.	



Magetohydrodynamics:	AssumpCons	
•  Ideal	MHD	describes	an	electrically	conducCng	single	fluid,	

assuming:	

–  low	frequency																																															,		

–  large	scales			

–  Ignores	electron	mass	and	finite	Larmor	radius	effects;	

–  Assume	plasma	is	strongly	collisional	à	L.T.E.,	isotropy;	

–  Fields	and	fluid	fluctuate	on	the	same	Gme	and	length	scales;	

–  Neglect	charge	separaCon,	electric	force	and	displacement	current.	
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Ideal	MHD	at	Last	
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Ideal	MHD	at	Last	

•  MHD	suitable	for	describing	plasma	at	large	scales;	

•  Good	first	approximaCon	to	much	of	the	physics,	even	when	some	of	
the	condiCons	are	not	met.	

•  Draw	some	intuiCve	conclusions	concerning	plasma	behavior	without	
solving	the	equaCons	in	detail.		

•  Fluid	equaCons	are	hyperbolic	conservaCon	laws.	
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(Special)	RelaCvisCc	Ideal	MHD	
•  Special	relaCvisCc	MHD	equaCons:	

	

•  RelaCvisCc	effects:		
–  Bulk	moCon:		v	≈	c;	
–  Strongly	magneCzed	rarefied	plasmas:	VA	≈	c;	
–  Extremely	hot	plasmas:	kT/m	≈	c2.	
	

•  Both	MHD	and	relaCcisCc	MHD	are	nonlinear	systems	of	hyperbolic	PDE.	
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where q = 5φρc3
iso is the magnitude of the saturated flux (Cowie

& McKee 1977), φ is a parameter of order unity accounting for
uncertainties in the estimate of q, ciso is the isothermal speed of
sound, and

Fclass = κ∥b̂(b̂ · ∇T ) + κ⊥[∇T − b̂(b̂ · ∇T )] (7)

is the classical heat flux with conductivity coefficients κ∥ and κ⊥
along and across the magnetic field lines, respectively (Orlando
et al. 2008). Indeed, the presence of a partially ordered magnetic
field introduces a large anisotropic behavior by channeling
the heat flux along the field lines while suppressing it in the
transverse direction (here b̂ = B/|B| is a unit vector along the
field line). We point out that, in the classical limit q → ∞,
thermal conduction is described by a purely parabolic operator
and flux discretization follows standard FD. In the saturated
limit (|∇T | → ∞), on the other hand, the equation becomes
hyperbolic and thus an upwind discretization of the flux is more
appropriate (Balsara et al. 2008). This is discussed in more detail
in Appendix A.

2.2. Relativistic MHD Equations

A (special) relativistic extension of the previous equations
requires the solution of energy momentum and number density
conservation. Written in divergence form we have

∂(ργ )
∂t

+ ∇ · (ργ v) = 0 ,

∂m
∂t

+ ∇ · [wγ 2vv − BB − EE] + ∇pt = 0 ,

(8)
∂B
∂t

− ∇ × (v × B) = 0 ,

∂E
∂t

+ ∇ · (m − ργ v) = 0 ,

where ρ is the rest-mass density, γ is the Lorentz factor,
velocities are given in units of the speed of light (c = 1), and
the fluid momentum m accounts for matter and electromagnetic
terms: m = wγ 2v + E × B, where E = −v × B is the electric
field and w is the gas enthalpy. The total pressure and energy
include thermal and magnetic contributions and can be written
as

pt = p +
B2 + E2

2
, E = wγ 2 − p +

B2 + E2

2
− ργ . (9)

Finally, the gas enthalpy w is related to ρ and p via an EoS,
which can be either the ideal gas law,

w = ρ +
Γp

Γ − 1
, (10)

or the Taub-Mathews (TM, Mathews 1971) EoS

w = 5
2
p +

√
9
4
p2 + ρ2 , (11)

which provides an analytic approximation of the Synge rela-
tivistic perfect gas (Mignone & McKinney 2007).

A relativistic formulation of the dissipative terms will not be
presented here and will be discussed elsewhere.

2.3. General Quasi-Conservative Form

In the following, we adopt an orthonormal system of
coordinates specified by the unit vectors êd (d is used
to label the direction, e.g., d = {x, y, z} in Carte-
sian coordinates) and conveniently assume that conserved
variables U = (ρ, ρv, E, B, ρXα)—for the MHD equations—
and U = (ργ , m, E, B)—for RMHD—satisfy the following
hyperbolic/parabolic partial differential equations

∂U
∂t

+ ∇ · F = ∇ · Π + Sp, (12)

where F and Π are, respectively, the hyperbolic and parabolic
flux tensors. The source term Sp is a point-local source term
which accounts for body forces (such as gravity), cooling,
chemical reactions, and the source term for the scalar multiplier
(see Equation (14) below). We note that equations containing
curl or gradient operators can always be cast in this form by
suitable vector identities. For instance, the projection of ∇ × E
in the coordinate direction given by the unit vector êd can be
rewritten as

(∇ × E) · êd ≡ ∇ · (E × êd ) + E · (∇ × êd ) , (13)

where the second term on the right-hand side should be included
as an additional source term in Equation (12) whenever different
from zero (e.g., in cylindrical geometry). Similarly, one can
rewrite the gradient operator as ∇p = ∇ · (Ip).

Several algorithms employed in PLUTO are best im-
plemented in terms of primitive variables, V = (ρ, v, B, p).
In the following, we shall assume a one-to-one map-
ping between the two sets of variables, provided by
appropriate conversion functions, that is, V = V(U) and
U = U(V).

3. SINGLE PATCH NUMERICAL INTEGRATION

PLUTO approaches the solution of the previous sets of
equations using either FV or FD methods both sharing a flux-
conservative discretization where volume averages (for the for-
mer) or point values (for the latter) of the conserved quanti-
ties are advanced in time. The implementation is based on the
well-established framework of Godunov-type, shock-capturing
schemes where an upwind strategy (usually a Riemann solver)
is employed to compute fluxes at zone faces. For the present
purposes, we shall focus on the FV approach where volume-
averaged primary flow quantities (e.g., density, momentum, and
energy) retain a zone-centered discretization. However, depend-
ing on the strategy chosen to control the solenoidal constraint,
the magnetic field can evolve either as a cell-average or as a face-
average quantity (using the Stokes’ theorem). As described in
Paper I, both approaches are possible in PLUTO by choosing
between Powell’s eight-wave formulation or the CT method,
respectively.

A third, cell-centered approach based on the generalized
Lagrange multiplier (GLM) formulation of Dedner et al. (2002)
has recently been introduced in PLUTO, and a thorough dis-
cussion as well as a direct comparison with CT schemes can be
found in the recent work by MT. The GLM formulation easily
builds in the context of MHD and RMHD equations by introduc-
ing an additional scalar field ψ , which couples the divergence

3



II.	BASIC	DISCRETIZATION	METHODS	
FOR	HYPERBOLIC	PDE	



Numerical	DiscreCzaCons	
•  We	consider	our	prototype	first-order	parCal	differenCal	equaCon	

(PDE):	

		
					also	known	as	a	“Conserva7on	Law”.	
•  Two	popular	methods	for	performing	discreCzaCon:	

–  Finite	Differences	(FD);	
–  Finite	Volumes	(FV);	

•  For	some	problems,	the	resulCng	discreCzaCons	look	idenCcal,	but	
they	are	disCnct	approaches;	
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Finite	Difference	Methods		
•  A	finite-difference	method	stores	the	soluCon	at	specific	points	in	

space	and	Cme;	

•  Associated	with	each	grid	point	is	a	funcCon	value,	

														

•  We	replace	the	derivaCves	in	our	PDE	with	differences	between	
neighbour	points.	
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Finite	Difference	Methods	
•  From	Taylor	expansion	of	the	funcCon	around	(xi,tn)	we	obtain,	e.g.	

–  Forward	derivaCve	(in	Cme):	

					or	simply		

–  Central	derivaCve	(in	space):		

						
						or	simply	
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Finite	Volume	Methods	
•  In	a	finite	volume	discreCzaCon,	the	unknowns	are	the	spaCal	

averages	of	the	funcCon	itself:	

					
	
					where	xi-½  and	xi+½  denote	the	locaCon	of	the	cell	interfaces.	
	
	
	

•  The	soluCon	to	the	conservaCon	law	involves	compuCng	fluxes	
through	the	boundary	of	the	control	volumes	

i+1 i i-1 

i+½ i-½ 



Finite	Volume	FormulaCon	
•  The	conservaGve	form	of	the	equaCons	provides	the	link	between	

the	differenGal	form	of	the	equaCon,	

						
					and	the	integral	form,	obtained	by	integraCng	the	equaCons	over		
					a	Cme	interval Δt	=	tn+1	–	tn	and	cell	size	Δx	=	xi+1/2	–	xi-1/2:	



Finite	Volume	FormulaCon	
•  SpaCal	integraCon	yields	

					with																																																					being	a	spaCal	average.	

•  IntegraCon	in	Cme	gives	

			where																																																																		is	a	temporal	average.					
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Finite	Volume	FormulaCon	
•  Rearranging	terms:	
	
						
					where		
	
	
	
	

•  The	conservaCon	form	is	an	exact	relaCon,	no	approximaCon	
introduced;	

•  It	provides	an	integral	representaCon	of	the	original	differenCal	
equaCon.	

•  The	integral	form	does	not	make	use	of	parCal	derivaCves!	
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Importance	of	ConservaCon	Form	
	
							
•  The	conservaCon	form	ensure	correct	descripCon	of	disconCnuous	

waves	in	terms	of	speed	and	jumps;	

•  It	guarantees	global	conservaCon	properCes	(no	mass	/	energy	/	
momentum	is	created	or	destroyed	unless	a	net	flux	exists);	

•  To	second-order	accuracy,	a	finite	difference	method	and	a	finite	
volume	method	look	essenCally	the	same;	

•  ApproximaCon	introduced	in	the	computaCon	of	the	flux.	
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Flux	computaCon:	the	Riemann	Problem	
•  Since	the	soluCon	is	known	only	at	tn,		
				some	kind	of	approximaCon	is	required		
				in	order	to	evaluate	the	flux	through		
				the	boundary:	
	

•  This	achieved	by	solving	the	so-called	“Riemann	Problem”,	i.e.,	
the	evoluCon	of	an	inital	disconCnuity	separaCng	two	constant	
states.	The	Riemann	problem	is	defined	by	the	iniCal	condiCon:	
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The	Riemann	Problem	
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IniCal	DisconCnuity	
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The	Riemann	Problem	
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t	>	0	
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III.	THE	LINEAR	ADVECTION	EQUATION:				
CONCEPTS	AND	DISCRETIZATIONS	



The	AdvecCon	EquaCon:	Theory	
•  First	order	parCal	differenCal	equaCon	(PDE)	in	(x,t):	

	

•  Hyperbolic	PDE:	informaCon	propagates	across	domain	at	finite	speed	
à	method	of	characterisCcs	

•  CharacterisCc	curves	saCsfy:	

•  Along	each	characterisCcs:	
	
		
	
	à	The	soluCon	is	constant	along	characterisCc	curves.	

U(x-at,0)	

U(x,t)	



The	AdvecCon	EquaCon:	Theory		
•  for	constant	a:	the	characterisCcs	are	straight	parallel	lines	and	the	

soluCon	to	the	PDE	is	a	uniform	shik	of	the	iniCal	profile:	

•  The	soluCon	shiks	to	the	right	(for	a	>	0)	or	to	the	lek	(a	<	0):	



DiscreCzaCon:	the	FTCS	Scheme	
•  Consider	our	model	PDE	

	
•  Forward	derivaCve	in	Cme:	

•  Centered	derivaCve	in	space:	

•  Pulng	all	together	and	solving	with	respect	to	Un+1		gives		

				where		C	=	a	Δt/Δx	is	the	Courant-Friedrichs-Lewy	(CFL)	number.	

•  We	call	this	method	FTCS	for	Forward	in	Time,	Centered	in	Space.	

•  It	is	an	explicit	method.	
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The	FTCS	Scheme	
•  At	t=0,	the	iniGal	condiGon	is	a	square	pulse	with	periodic	

boundary	condiCons:	

Something	isn’t	right…	why	?	

Advection equation:
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FTCS:	von	Neumann	Stability	Analysis	
•  Let’s	perform	an	analysis	of	FTCS	by	expressing	the	soluCon	as	a	

Fourier	series.		
•  Since	the	equaCon	is	linear,	we	only	examine	the	behavior	of	a	

single	mode.	Consider	a	trial	soluCon	of	the	form:	

•  Plugging	in	the	difference	formula:	

•  Indipendently	of	the	CFL	number,	all	Fourier	modes	increase	in	
magnitude	as	Cme	advances.	

•  This	method	is	uncondiConally	unstable!	



Forward	in	Time,	Backward	in	Space	
•  Let’s	try	a	difference	approach.	Consider	the	backward	formula	for	

the	spaCal	derivaCve:	

•  The	resulCng	scheme	is	called	FTBS:	

•  Apply	von	Neumann	stability	analysis	on	the	resulCng	discreCzed	
equaCon:	

•  Stability	demands																																		

•  for	a	<	0	the	method	is	unstable,	but	
•  for	a	>	0	the	method	is	stable		when			0	≤	C	=	a	Δt/Δx	≤	1.	

n+1	

n	



Forward	in	Time,	Forward	in	Space	
•  RepeaCng	the	same	argument	for	the	forward	derivaCve	

•  The	resulCng	scheme	is	called	FTFS:	

•  Apply	stability	analysis	yields	

•  If	a	>	0	the	method	will	always	be	unstable	

•  However,	if	a	<	0	and		-1	≤	C	=	a	Δt/Δx	≤	0		then	this	method	is	
stable;	

n+1	

n	



Stable	DiscreCzaCons:	FTBS,	FTFS	

Forward	in	Time,		
Backward	in	Space	

Forward	in	Time,		
Forward	in	Space	



Stability:	the	CFL	CondiCon	
•  Since	the	advecCon	speed	a	is	a	parameter	of	the	equaCon,	Δx	is	

fixed	from	the	grid,	the	previous	inequaliCes	on	C=aΔt/Δx	are	
stability	constraints	on	the	Cme	step	for	explicit	methods	

•  Δt	cannot	be	arbitrarily	large	but,	rather,	less	than	the	Cme	taken	
to	travel	one	grid	cell	(à	CFL	condiGon).	

•  In	the	case	of	nonlinear	equaCons,	the	speed	can	vary	in	the	
domain	and	the	maximum	of	a	should	be	considered	instead.	



The	1st	Order	Godunov	Method	
•  Summarizing:	the	stable	discreGzaGon	makes	use	of	the	grid	point	

where	informaCon	is	coming	from:	

•  è	‘Upwind’:	

•  This	is	also	called	the	first-order	Godunov	method;	

a>0	 a<0	



ConservaCve	Form	
•  Define	the	“flux”	funcCon	
				so	that	Godunov	method	can	be	cast	in	conservaGve	form	

			

•  The	conservaCve	form	ensures	a	correct	descripCon	of	
disconGnuiGes	in	nonlinear	systems,	ensures	global	conservaCon	
properCes	and	is	the	main	building	block	in	the	development	of	
high-order	finite	volume	schemes.	

a	>	0	 a	<	0	



The	Riemann	Problem	

UL	

UR	

LeV	State	

Right	State	

x	

Cell	Interface	

i i+1 i+½ 

IniCal	DisconCnuity	

t	=	0,	a	>	0	



The	Riemann	Problem	

UL	

UR	

LeV	State	

Right	State	

x	

Cell	Interface	

i i+1 i+½ 

DisconCnuity	Breakup	

t	>	0,	a	>	0	

Flux	=	Solu7on	on	the	axis	



Code	Example	
•  File	name:	advection.c 

•  Purpose:	solve	the	linear	advecCon		
																					equaCon	using	the	1st-order		
																					Godunov	method.	
•  Usage:			

> gcc –O advection.c –o advection 
> ./advection 

 
•  Output:	two-column	ascii	data	file.	



IV.	LINEAR	SYSTEMS	OF	HYPERBOLIC	
CONSERVATION	LAWS	



System	of	EquaCons:	Theory	
•  We	turn	our	aSenCon	to	the	system	of	equaCons	(PDE)	

					where																																											is	the	vector	of	unknowns.	A	is	a	m × 
m	constant	matrix.	

•  For	example,	for	m=3,	one	has	



System	of	EquaCons:	Theory	
•  The	system	is	hyperbolic	if	A	has	real	eigenvalues,		λ1	≤	…	≤	λm	and	

a	complete	set	of	linearly	independent	right	and	lek	eigenvectors			
rk		and	lk		(rj ⋅lk =δjk)	such	that	

•  For	convenience	we	define	the	matrices	Λ		=	diag(λk),	and	

	

•  So	that		A⋅R	=	R⋅Λ,	L⋅A	=	Λ⋅L	,	L⋅R	=	R⋅L	=	I,	L⋅A⋅R	=	Λ.		



System	of	EquaCons:	Theory	
•  The	linear	system	can	be	reduced	to	a	set	of	decoupled	linear	

advecCon	equaCons.	
•  MulCply	the	original	system	of	PDE’s	by	L	on	the	lek:	

•  Define	the	characterisGc	variables			w=L⋅	q		so	that		

•  Since		Λ		is	diagonal,	these	equaCons	are	not	coupled	anymore.	



System	of	EquaCons:	Theory	
•  In	this	form,	the	system	decouples	into	m	independent	advecCon	

equaCons	for	the	characterisCc	variables:	

			
					where																													(k=1,2,…,m)		is	a	characterisCc	variable.	

•  When	m=3	one	has,	for	instance:		

	



System	of	EquaCons:	Theory	
•  The	m	advecCon	equaCons	can	be	solved	independently	by	applying	the	

standard	soluCon	techniques	developed	for	the	scalar	equaCon.	

•  In	parCcular,	one	can	write	the	exact	analyGcal	soluGon	for	the	k-th	
characterisCc	field	as	

			
					i.e.,	the	iniCal	profile	of	wk	shiks	with	uniform	velocity	λk	,	and	
	
					
					is	the	iniCal	profile.	
•  The	characterisCcs	are	thus	constant	along	the	curves	dx/dt	=	λk		



System	of	EquaCons:	Exact	SoluCon	
•  Once	the	soluCon	in	characterisCc	space	is	known,	we	can	solve	the	

original	system	via	the	inverse	transformaCon	

•  The	characterisCc	variables	are	thus	the	coefficients	of	the	right	
eigenvector	expansion	of	q.	

•  The	soluCon	to	the	linear	system	reduces	to	a	linear	combinaCon	of	m	
linear	waves	traveling	with	velociCes		λk	.	

•  Expressing	everything	in	terms	of	the	original	variables	q,		



Riemann	Problem	for	DisconCnuous	Data	
•  If	q	is	iniCally	disconCnuous,	one	or	more	characterisCc	variables	

will	also	have	a	disconCnuity.	Indeed,	at	t	=	0,	

•  In	other	words,	the	iniCal	jump	qR	-	qL	is	decomposed	in	several	
waves	each	propagaCng	at	the	constant	speed	λk		and	
corresponding	to	the	eigenvectors	of	the	Jacobian	A:	

					where																																												are	the	wave	strengths		



Riemann	Problem	for	DisconCnuous	Data	
•  For	the	linear	case,	the	exact	soluCon	for	each	wave	at	the	cell	

interface	is:	

•  The	complete	soluCon	is	found	by	adding	all	wave	contribuCons:	

•  and	the	flux	is	finally	computed	as		



The	Riemann	Problem	

qL qR 

q*L 
q*R 

x=λ1t x=λ2t 
x=λ3t 

x 

t 

xi+½-λ2t 

(xi+½,t) 

xi+½-λ3t xi+½-λ1t 
Point (xi+1/2,t) traces back to the right of the λ1 characteristic emanating from  
the initial jump, but to the left of the other 2, so the solution is: 



Numerical	ImplementaCon	
•  We	suppose	the	soluCon	at	Cme	level	n	is	known	as	qn	and	we	

wish	to	compute	the	soluCon	qn+1	at	the	next	Cme	level	n+1.	

•  Our	numerical	scheme	can	be	derived	by	working	in	the	
characterisCc	space	and	then	transforming	back:	

					where	
	
					is	the	Godunov	flux	for	a	linear	system	of	advecCon	equaCons.	



V.	NONLINEAR	SCALAR	HYPERBOLIC	
PDE	



Nonlinear	AdvecCon	EquaCon	
•  We	turn	our	aSenCon	to	the	scalar	conservaCon	law	

•  Where	f(u)	is,	in	general,	a	nonlinear	funcCon	of	u.		

•  To	gain	some	insights	on	the	role	played	by	nonlinear	effects,	we	
start	by	considering	the	inviscid	Burger’s	equaCon:	



Nonlinear	AdvecCon	EquaCon	
•  We	can	write	Burger’s	equaCon	also	as	

•  In	this	form,	Burger’s	equaCon	resembles	the	linear	advecCon	
equaCon,	except	that	the	velocity	is	no	longer	constant	but	it	is	
equal	to	the	soluCon	itself.	

•  The	characterisCc	curve	for	this	equaCon	is	

•  à	u	is	constant	along	the	curve	dx/dt=u(x,t)	à	characterisCcs		are	
again	straight	lines:	values	of	u	associated	with	some	fluid	element	
do	not	change	as	that	element	moves.	



Nonlinear	AdvecCon	EquaCon	
•  From	

				one	can	predict	that,	higher	values	of	u	will	propagate	faster	than	
lower	values:	this	leads	to	a	wave	steepening,	since	upstream	
values	will		advances	faster	than	downstream	values.	



Nonlinear	AdvecCon	EquaCon	
•  Indeed,	at	t=1	the	wave	profile	will	look	like:	

•  the	wave	steepens…	



Nonlinear	AdvecCon	EquaCon	
•  If	we	wait	more,	we	should	get	something	like	this:	

•  A	mulC-value	funcCons	?!	à	Clearly	NOT	physical	!	

?	?	?	



Burger	EquaCon:	Shock	Waves	
•  The	correct	physical	soluCon	is	to	place	a	disconCnuity	there:		
					a	shock	wave.		

•  Since	the	soluCon	is	no	longer	smooth,	the	differenCal	form	is	not	
valid	anymore	and	we	need	to	consider	the	integral	form.	

Shock position 



Burger	EquaCon:	Shock	Waves	
•  This	is	how	the	soluCon	should	look	like:	

•  Such	soluCons	to	the	PDE	are	called	weak	soluGons.	



Burger	EquaCon:	Shock	Waves	
•  Let’s	try	to	understand	what	happens	by	looking	at	the	

characterisCcs.	
•  Consider	two	states	iniCally	separated	by	a	jump	at	an	interface:	

•  Here,	the	characterisCc	velociCes	on	the	lek	are	greater	than	those	
on	the	right.	

uL 

uR 

u(x) 

x 



Burger	EquaCon:	Shock	Waves	
•  The	characterisCc	will	intersect,	creaCng	a	shock	wave:	

•  The	shock	speed	is	such	that	λ(uL)	>	S	>	λ(uR).	This	is	called	the	
entropy	condiGon.		

t 

x 

t 

x 



Nonlinear	AdvecCon	EquaCon	
•  The	shock	speed	S	can	be	found	using	the	Rankine-Hugoniot	jump	

condiCons,	obtained	from	the	integral	form	of	the	equaCon:	

•  For	Burger’s	equaCon	f(u)	=	u2/2,	one	finds	the	shock	speed	as	



Burger	EquaCon:	RarefacCon	Waves	
•  Let’s	consider	the	opposite	situaCon:	

•  Here,	the	characterisCc	velociCes	on	the	lek	are	smaller	than	those	
on	the	right.	

uL 

uR u(x) 

x 



Burger	EquaCon:	RarefacCon	Waves	
•  Now	the	characterisCcs	will	diverge:	

•  Pulng	a	shock	wave	between	the	two	states	would	be	incorrect,	
since	it	would	violate	the	entropy	condiCon.	Instead,	the	proper	
soluCon	is	a	rarefacGon	wave.		

t 

x 

t 

x 

tail 
head 



Burger	EquaCon:	RarefacCon	Waves	

•  The	head	of	the	rarefacCon	moves	at	the	speed	λ(uR),	whereas	the	tail	
moves	at	the	speed	λ(uL).	

•  The	general	condiCon	for	a	rarefacCon	wave	is	λ(uL)<λ(uR)	

•  Both	rarefacCons	and	shocks	are	present	in	the	soluCons	to	the	Euler	
equaCon.	Both	waves	are	nonlinear.	

•  A	rarefacCon	wave	is	a	nonlinear	
wave	that	smoothly	connects	the	
lek	and	the	right	state.	It	is	an	
expansion	wave.	

•  The	soluCon	can	only	be	self-
similar	and	takes	on	the	range	of	
values	between	uL	and	uR.	



Burger	EquaCon:	Riemann	Solver	
•  These	results	can	be	used	to	write	the	general	soluCon	to	the	

Riemann	problem	for		Burger’s	equaCon:	

–  If	uL	>	uR		the	soluCon	is	a	disconCnuity	(shock	wave).	In	this	case	

–  If	uL	<	uR			the	soluCon	is	a	rarefacGon	wave.	In	this	case	



Nonlinear	AdvecCon	EquaCon	
•  SoluCons	look	like	

•  		for	a	rarefacCon	and	a	shock,	respecCvely.	



Code	Example	
•  File	name:	burger.c 

•  Purpose:	solve	Burger’s	equaCon		
																					using	1st-order	Godunov			
																					method.	
•  Usage:			

 > gcc –O burger.c –o burger 
 > ./burger 

 
•  Output:	two-column	ascii	data	files	
																			“data.nnnn.out”	



VI.	NONLINEAR	SYSTEMS	OF	
CONSERVATION	LAW	



Nonlinear	Systems	
•  Much	of	what	is	known	about	the	numerical	soluCon	of	hyperbolic	

systems	of	nonlinear	equaCons	comes	from	the	results	obtained	in	
the	linear	case	or	simple	nonlinear	scalar	equaCons.	

•  The	key	idea	is	to	exploit	the	conservaCve	form	and	assume	the	
system	can	be	locally	“frozen”	at	each	grid	interface.	

•  However,	this	sCll	requires	the	soluCon	of	the	Riemann	problem,	
which	becomes	increasingly	difficult	for	complicated	set	of	
hyperbolic	P.D.E.			



Euler	EquaCons	
•  System	of	conservaCon	laws	describing	conservaCon	of	mass,	

momentum	and	energy:	

•  Total	energy	density	E	is	the	sum	of		
					thermal	+	KineCc	terms:	
	
•  Closure	requires	an	EquaCon	of	State	(EoS).		
				For	an	ideal	gas	one	has	



Euler	EquaCons:	CharacterisCc	Structure	
•  The	equaCons	of	gasdynamics	can	also	be	wriSen	in	“quasi-linear”	

or	primiCve	form.	In	1D:	

				where	V	=	[ρ,vx,p]	is	a	vector	of	primiCve	variable,	cs	=	(γp/ρ)1/2		is	
the	adiabaCc	speed	of	sound.	

•  It	is	called	“quasi-linear”	since,	differently	from	the	linear	case	
where	we	had	A=const	,	here	A	=	A(V).	



Euler	EquaCons:	CharacterisCc	Structure	
•  The	quasi-linear	form	can	be	used	to	find	the	eigenvector	

decomposiCon	of	the	matrix	A:	

•  Associated	to	the	eigenvalues:	

•  These	are	the	characterisCc	speeds	of	the	system,	i.e.,	the	speeds	
at	which	informaCon	propagates.	They	tell	us	a	lot	about	the	
structure	of	the	soluCon.	



Euler	EquaCons:	Riemann	Problem	
•  By	looking	at	the	expressions	for	the	right	eigenvectors,	

						

•  	we	see	that	across	waves	1	and	3,	all	variables	jump.	These	are	
nonlinear		waves,	either	shocks	or	rarefacCons		waves.	

•  Across	wave	2,	only	density	jumps.	Velocity	and	pressure	are	
constant.	This	defines	the	contact	disconGnuity.	

•  The	characterisCc	curve	associated	with	this	linear	wave	is	dx/dt	=	
u,	and	it	is	a	straight	line.	Since	vx	is	constant	across	this	wave,	the	
flow	is	neither	converging	or	diverging.	



Euler	EquaCons:	Riemann	Problem	
•  The	soluCon	to	the	Riemann	problem		looks	like	

•  The	outer	waves	can	be	either	shocks	or	rarefacCons.	
•  The	middle	wave	is	always	a	contact	disconCnuity.	
•  In	total	one	has	4	unknowns:																									,	since	only	density	jumps	

across	the	contact	disconCnuity.	

x 

t (contact) 
(shock or rarefaction) 

(shock or rarefaction) 



Euler	EquaCons:	Riemann	Problem	
•  Depending	on	the	iniCal	disconCnuity,	a	total	of	4	paSerns	can	

emerge	from	the	soluCon:	

x 

t C S R 

x 

t C S R 

x 

t 
C R 

x 

t 
C S S R 



Euler	EquaCons:	Shock	Tube	Problem	
•  The	decay	of	the	disconCnuity	defines	what	is	usually	called	the	“shock	tube	

problem”,		



Code	Example	
•  File	name:	euler.f 

•  Purpose:	solve	1D	Euler’s	equaCon		
																					using	a	1st-order			
																					Lax-Friedrichs	method.	
•  Usage:			

 > gfortran –O euler.f –o euler 
 > ./euler 

 
•  Output:		4-column	ascii	data	files	
																			“data.out”	



VII.	RIEMANN	SOLVERS	



The	Riemann	Problem	
•  Riemann	solvers	generalize	the	concept	of	“upwind”	to	nonlinear	

systems	of	hyperbolic	PDE:	the	discreGzaGon	is	biased	towards	the	
direcGon	of	propagaGon	of	waves.		

•  The	Riemann	problem	requires	the	soluCon	of	nonlinear	systems		
of		equaCons.	

•  Depending	on	the	underlying	system	of	PDE	the	soluCon	may	or	
may	not	be	feasible.		

	
	



The	Riemann	Problem	
•  In	CFD,	the	soluCon	to	the	Riemann	problem	depends	on	the	

underlying	system	of	conservaCon	laws:	
	

Magnetohydrodynamics	(MHD),	
7	waves	



Riemann	Problem	in	MHD/RelaCvisCc	MHD	

•  7	wave	paSern,	
•  across	the	contact	wave,	for	Bn≠0,	only	density	has	a	jump;	
•  across	Alfven	waves,	[ρ]	=	[pgas]=0	but	normal	velocity	[vx]≠	0		
						àmagneCc	field	circularly	/	ellipCcally	polarized.	

Fast [S/R] 
fast  [S/R] 

x 

Alfven 
entropy slow [S/R]  

Alfven 

UL, left state UR, right state 

t 
slow [S/R]  



Solving	the	Riemann	Problem	
•  The	full	analyCcal	soluCon	to	the	Riemann	problem	for	the	Euler	

equaCon	can	be	found,	but	this	is	a	rather	complicated	task	(see	
the	book	by	Toro).		

•  In	general,	approximate	methods	of	soluCon	are	preferred.		

•  The	advantage	of	using	approximate	solvers	is	the	reduced	
computaConal	costs	and	the	ease	of	implementaCon.	

•  The	degree	of	approximaCon	reflects	on	the	ability	to		“capture”	
and	spread	disconCnuiCes	over	few	or	more	computaConal	zones.			



Solving	the	Riemann	Problem	

•  Exact	Riemann	solvers	(nonlinear)	
–  Full	nonlinear	soluCon:		
–  Expensive	/	impracCcable	for	heavily	usage	in	upwind	codes;	

•  Linearized	Riemann	solvers	(Roe	type)	
–  require	characterisCc	decomposiCon	in	eigenvectors	
–  may	be	prone	to	numerical	pathologies	

•  HLL-type	Riemann	solvers	(guess-based)	
–  based	on	guess	to	the	signal	speeds	and	on	the	integral	average	of	the	

soluCon	over	the	Riemann	Fan;	
–  fewer	waves	are	considered	in	the	soluCon;	
–  preserve	posiCvity;	



ResoluCon	of	Contact	DisconCnuiCes		



A	2D	Example:	Axisymmetric	PWN	



VIII.	HIGH-ORDER	FINITE	VOLUME	
METHODS	



Numerical	Diffusion	
•  Upwind	methods	have	a	natural,	built-in	numerical	dissipaCon.		
•  A	discreCzed	PDE	gives	the	exact	soluCon	to	an	equivalent	

equaCon	with	a	diffusion	term;	

•  Consider	

–  Use	upwind	discreCzaCon:	

–  Use	Taylor	expansion	on																					and				
–  The	soluCon	to	the	discreCzed	equaCon	saCsfies	exactly		

–  This	is	an	advecCon-diffusion	equaCon.		
	

MHD equations primitive form
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MHD equations, conservative form
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Numerical	Diffusion	
•  Generally,	the	amount	of	numerical	diffusion	is	controlled	by	the	

underlying	grid	resoluCon	/	numerical	scheme:	
–  spaCal	reconstrucGon	
–  Riemann	solver	accuracy	
–  (marginally)	Gme	stepping	

•  PROS:	numerical	diffusion	has	a	stabilizing	effect.	
•  CONS:	suppress	small	scale	effect,	may	prevent	growth	of	

numerical	instabiliCes	when	upwinding	is	not	done	correctly.	
	



Improving	spaCal	accuracy	
•  High	order	reconstrucCon	can	be	carried	inside	each	cell	by	

suitable	oscillaCon-free	polynomial	interpolaCon:	
	
Piecewise		
constant	
	
	
Piecewise		
Linear	
(TVD)	
	
Piecewise		
Parabolic	
(PPM,	WENO)	



1st	and	2nd	Order	ReconstrucCon	
•  1st	First-order	reconstrucCon:	

	
•  For	2nd-order	we	use	linear	

reconstruCon:	



PrevenCng	OscillaCons	

•  Use	slope	limiters	to	avoid	spurious		
					oscillaCons:	

	

Δi-½ 

Δi+½ 

Δi 

Undesired new minimum 



High	Order	IntegraCon	in	Time	
•  A	simple	and	effecCve	way	to	achieve	2nd	or	3rd	order	accuracy	in	

Cme	is	to	treat	the	PDE	in	semi-discrete	form:	

•  In	such	a	way	the	PDE	becomes	a	regular	ordinary	differenCal	
equaCon	(ODE)	in	Cme;	

•  Standard	integraCon	based	on	predictor/corrector	schemes	can	
then	be	used	to	solve	ODEs.	



Second-Order	Runge-KuSa		
•  Using	the	trapezoidal	method,	the	soluCon	of	our	ODE	writes:	

•  the	unknown														appears	on	both	side	of	the	equaCon:	use	an	
esCmate	(predictor)	for																with	Euler	method:	

			

				

•  This	is	the	second-order	explicit	Runge-KuSa	method	(or	Heun’s	
method)	It	is	2nd	order		accurate.	



The	Reconstruct-Solve-Update	Algorithm	
•  Start	from	volume-averages	

•  Reconstruct	interface	values	from	
zone	averages	using	a	high-order	
non-oscillatory	polynomial:	

•  Solve	Riemann	problems	between	
adjacent,	disconCnuous	states.	

						à	Compute	interface	flux.	
	
•  Update	conserved	variables	with	

Cme	stepping	algorithm	(e.g.	RK2):	



A	“Pseudo-Code”…	

Time Stepping: 

Data 
Reconstruction 

Riemann 
Solver 

begin loop on grid zones{ 

}end loop on grid zones 

for each dt { 

} 
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IX.	MULTIDIMENSIONAL	ISSUES:	
DIVERGENCE	OF	∇⋅B	=	0	



MulC	Dimensional	IntegraCon	
•  IntegraCon	in	more	than	one	dimensions	can	be	achieved	using	

two	disCnct	approaches:	

–  Dimensionally	Split	schemes:	solve	the	PDE	as	a	sequence	of	1-D	sub-
problems.		

–  Dimensionally	Unsplit	schemes:	solve	the	full	problem	in	one	step:	

   
qn 

 
       q* qn+1 = 



∇⋅B		CondiCon			
•  Numerically,	the	solenoidal	condiCon	is	fulfilled	only	at	the	truncaCon	

level	and	non-solenoidal	components	may	be	generated	during	the	
evoluCon:	

•  MagneCc	monopoles	cause	unphysical	acceleraCons	of	the	plasma	in	the	
direcCon	parallel	to	the	field	lines	(BrackBill	&	Barnes	1980)	



Cell	Centered	vs	Staggered	
•  ∇⋅B	=	0	cannot	be	saCsfied	for	any	type	of	discreCzaCon;		

•  Robustness	of	a	method	can	be	assessed	on	pracCcal	basis	by	extensive	
numerical	tesCng.	

•  Cell	Centered	Methods:	magneCc	field	treated	as	volume	average	over	
the	zone:	
	

•  ProjecCon	method	(BrackBill	&	Barnes,	1980)	
•  Powell’s	8-wave	formulaCon	(Powell	1994,	Powell	et	al.	1999)	
•  Field	CD	(Toth	2000)	
•  Divergence	cleaning	(Dedner	2002,	Mignone	et	al.	2010)	

•  Staggered	(face-centered)	methods:	

–  magneCc	field	has	a	staggered	representaCon	where	field	components	live	
on	the	face	they	are	normal	to	(Evans	&	Hawley	1988,	Balsara	2000,	2004).	



1.	ProjecCon	Method	
•  Correct	the	magneCc	field	aker	the	Cme	step	is	completed;	
•  StarCng	from	Bn	we	obtain	B*	which	is	not	divergence-free.	

•  Then,	using	Hodge-projecCon:	
•  Taking	the	divergence	of	both	sides	gives	

		
				which	can	be	solved	for	the	scalar	funcCon	φ.	
•  The	magneCc	field	is	then	corrected	as	
•  Cons:	requires	the	soluCon	of	a	Poisson	equaCon.	



2.	Powell’s	Method	(8	wave)	
•  Start	from	the	primiCve	form	of	the	MHD	equaCons	without	

discarding	the	∇⋅B	term	à	quasi-conservaCve	form	



2.	Powell’s	Method	(8	wave)		
•  The	non-conservaCve	form	is	discreCzed	by	introducing	an	8th	

wave	in	the	Riemann	solver	associated	with	jumps	in	the	normal	
component	of	magneCc	field.	

•  With	the	non-conservaCve	formulaCon	∇⋅B	errors	generated	by	
the	numerical	soluCon	do	not	accumulate	at	a	fixed	grid	point	but,	
rather,	propagate	together	with	the	flow.		

•  For	many	problems	the	8-wave	formulaCon	works.	

•  However,	in	problems	containing	strong	shocks,	the	non-
conservaCve	source	terms	can	produce	incorrect	jump	condiCons	
and	consequently	the	scheme	can	produce	incorrect	results	



3.	Hyperbolic	Divergence	Cleaning	
•  The	divergence	constraint	is	coupled	to	Faraday’s	law	by	introducing	a	

new	scalar	field	funcCon	ψ	(generalized	Lagrangian	mulCplier).		
•  The	second	and	third	Maxwell’s	equaCons	are	thus	replaced	by	

						
						where	D	is	a	linear	differenCal	operator.		
•  An	efficient	method	may	be	obtained	by	choosing																																													

yielding	a	mixed	hyperbolic/parabolic	correcCon.	
•  Direct	manipulaCon	leads	to	the	telegraph	equaCon:	

à	errors	are	propagated	to	the	domain	at	finite	speed	ch	and	damped	at	
the	same	Cme.	



3.	Hyperbolic	Cleaning	
•  The	resulCng	system	is	called	the	generalized	Lagrange	mulCplier	

(GLM-MHD)	and	includes	9	evoluCon	equaCon:	

•  Divergence	errors	propagate	with	speed	ch		even	at	stagnaCon	
points	where	v	=	0.	



4.	Constrained	Transport	
•  Staggered	magneCc	field	treated	
				as	an	area-weighted	average	on		
				the	zone	face.	

•  Thus,	different	magneCc	field		
				components	live	at	different		
					locaCon;	

•  A	discrete	version	of	Stoke’s	theorem	is	used	to	update	them:	



4.	Constrained	Transport	in	2D	
•  In	2D,	the	emf	is	placed	at	cell	corners.	
•  The	discrete	Stoke’s	theorem	becomes	

•  It	is	easy	to	show	that	the	numerical	divergence	of	b	defined	by		

				
				does	not	change	due	to	perfect	cancellaCon	of	term	to	machine	

accuracy	(Toth,	2000).	



Scheme	Comparison	

to the four selected integration schemes, is given in Table 3. We notice that the CT, GLM and EGLM schemes all yield errors of
the same order of magnitude (typically 10!4). Beware that these computations may be susceptible to small variations
depending on implementation details (e.g. limiter, Courant number, etc.) and thus give a representative estimate of the error.
For instance, the implementation of the CTU-CT scheme in the PLUTO code [19] is similar, although not exactly equivalent, to
that of Gardiner and Stone [15] who instead use piecewise parabolic reconstruction. Nevertheless, we have ascertained that
the 8W scheme always performs the worst and the discrepancy becomes particular evident by looking at the longitudinal
component of the field where the 8W scheme yields, once again, incorrect (although smaller than the previous 2D case)
jumps. This is better illustrated in Fig. 6, where we compare the profiles of B1 for the four selected numerical schemes.
We stress that, despite its non-conservative character, the EGLM formulation does not seem to produce incorrect jump con-
ditions or wrong shock propagation speeds.

A resolution study, shown in the right panel of Fig. 7, demonstrates that errors produced by the GLM and EGLM formu-
lations are very much comparable and only weakly dependent on the a parameter. Both schemes report a minimum at
a " 0:005—0:01 regardless of the resolution, and the inferred order of convergence is approximately one as expected for
solutions involving shock waves.

4.4. Magnetic field loop advection

This problem consists of a weak magnetic field loop being advected in a uniform velocity field. Since the total pressure is
dominated by the thermal contribution, the magnetic field is essentially transported as a passive scalar.

4.4.1. Two-dimensional advection
Following [13,14,16], we employ a periodic computational box defined by x 2 ½!1;1$ and y 2 ½!0:5;0:5$ discretized on

Nx % Nx=2 grid cells ðNx ¼ 128Þ. Density and pressure are initially constant and equal to 1. The velocity of the flow is given
by v ¼ ðV0 cosa;V0 sin a;1Þ with V0 ¼

ffiffiffi
5
p

; sin a ¼ 1=
ffiffiffi
5
p

and cos a ¼ 2=
ffiffiffi
5
p

. The magnetic field is defined through its mag-
netic vector potential as

Az ¼
A0ðR! rÞ if r 6 R;
0 if r > R;

"
ð41Þ

where A0 ¼ 10!3; R ¼ 0:3 and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The simulations are allowed to evolve until t ¼ 2 ensuring the crossing of the

loop twice through the periodic boundaries.
In Fig. 8, we show the magnetic energy density for the 8W, GLM and CT schemes using Ca ¼ 0:8 (top) and Ca ¼ 0:4 (bot-

tom), along with the field lines shape. The circular shape of the loop is best preserved with the CT and GLM schemes while
some distortions are visible using the eight-wave formulation. Using Ca ¼ 0:4 with the GLM scheme yields slightly better
results, while the CT does not seem to be affected by the choice of the Courant number.

Fig. 4. The parallel magnetic field component for the four schemes. Concordantly with the results of Tóth [25] the eight-wave formalism fails to capture the
correct jumps. This problem is absent in the results of the other schemes and the field component remains close to the expected value 5=

ffiffiffiffiffiffiffi
4p
p

away from
discontinuities. Spikes are found in proximity of shock waves and are of the same order of magnitude for GLM, EGLM and CT schemes.

2128 A. Mignone, P. Tzeferacos / Journal of Computational Physics 229 (2010) 2117–2138

to the four selected integration schemes, is given in Table 3. We notice that the CT, GLM and EGLM schemes all yield errors of
the same order of magnitude (typically 10!4). Beware that these computations may be susceptible to small variations
depending on implementation details (e.g. limiter, Courant number, etc.) and thus give a representative estimate of the error.
For instance, the implementation of the CTU-CT scheme in the PLUTO code [19] is similar, although not exactly equivalent, to
that of Gardiner and Stone [15] who instead use piecewise parabolic reconstruction. Nevertheless, we have ascertained that
the 8W scheme always performs the worst and the discrepancy becomes particular evident by looking at the longitudinal
component of the field where the 8W scheme yields, once again, incorrect (although smaller than the previous 2D case)
jumps. This is better illustrated in Fig. 6, where we compare the profiles of B1 for the four selected numerical schemes.
We stress that, despite its non-conservative character, the EGLM formulation does not seem to produce incorrect jump con-
ditions or wrong shock propagation speeds.

A resolution study, shown in the right panel of Fig. 7, demonstrates that errors produced by the GLM and EGLM formu-
lations are very much comparable and only weakly dependent on the a parameter. Both schemes report a minimum at
a " 0:005—0:01 regardless of the resolution, and the inferred order of convergence is approximately one as expected for
solutions involving shock waves.

4.4. Magnetic field loop advection

This problem consists of a weak magnetic field loop being advected in a uniform velocity field. Since the total pressure is
dominated by the thermal contribution, the magnetic field is essentially transported as a passive scalar.

4.4.1. Two-dimensional advection
Following [13,14,16], we employ a periodic computational box defined by x 2 ½!1;1$ and y 2 ½!0:5;0:5$ discretized on

Nx % Nx=2 grid cells ðNx ¼ 128Þ. Density and pressure are initially constant and equal to 1. The velocity of the flow is given
by v ¼ ðV0 cosa;V0 sin a;1Þ with V0 ¼

ffiffiffi
5
p

; sin a ¼ 1=
ffiffiffi
5
p

and cos a ¼ 2=
ffiffiffi
5
p

. The magnetic field is defined through its mag-
netic vector potential as

Az ¼
A0ðR! rÞ if r 6 R;
0 if r > R;

"
ð41Þ

where A0 ¼ 10!3; R ¼ 0:3 and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The simulations are allowed to evolve until t ¼ 2 ensuring the crossing of the

loop twice through the periodic boundaries.
In Fig. 8, we show the magnetic energy density for the 8W, GLM and CT schemes using Ca ¼ 0:8 (top) and Ca ¼ 0:4 (bot-

tom), along with the field lines shape. The circular shape of the loop is best preserved with the CT and GLM schemes while
some distortions are visible using the eight-wave formulation. Using Ca ¼ 0:4 with the GLM scheme yields slightly better
results, while the CT does not seem to be affected by the choice of the Courant number.

Fig. 4. The parallel magnetic field component for the four schemes. Concordantly with the results of Tóth [25] the eight-wave formalism fails to capture the
correct jumps. This problem is absent in the results of the other schemes and the field component remains close to the expected value 5=

ffiffiffiffiffiffiffi
4p
p

away from
discontinuities. Spikes are found in proximity of shock waves and are of the same order of magnitude for GLM, EGLM and CT schemes.

2128 A. Mignone, P. Tzeferacos / Journal of Computational Physics 229 (2010) 2117–2138

4.5. Three-dimensional field loop advection

A three-dimensional extension can be obtained by rotating the previous 2D magnetic field configuration around one axis
using the coordinate transformation given by Eq. (35) with a ¼ 0 and c ¼ tan"1 1=2, see [15]. Even though the loop is rotated
only around one axis, the velocity profile ðvx;vy;vzÞ ¼ ð1;1;2Þ makes the test intrinsically three-dimensional. We consider
the computational box "0:5 6 x 6 0:5; "0:5 6 y 6 0:5; "1:0 6 z 6 1:0, resolved on a N % N % 2N grid. Boundary conditions
are periodic in all directions.

A three-dimensional rendering of the magnetic energy density is shown in Fig. 10 for the selected schemes while relevant
quantities are plotted in the three panels of Fig. 11. All schemes show a similar amount of numerical dissipation, in agree-
ment with the results of Gardiner and Stone [15].

As for the 2D case, it is useful to check the growth of the magnetic field component B3 ¼ ð"Bx þ 2BzÞ=
ffiffiffi
5
p

orthogonal to the
original ðx1; x2Þ plane where the loop is two-dimensional. Analytically, the magnetic field component in this direction is a
trivial constant of motion since

@B3

@t
¼ v3

@B1

@x1
þ @B2

@x2

" #
¼ 0: ð42Þ

The numerical integration in the rotated ðx; y; zÞ Cartesian frame, however, preserves this condition only to some accuracy
which strongly reflects the ability of the scheme in controlling the divergence-free constraint (this is true for all presented
numerical methods). The middle panel in Fig. 11 shows the volume-integrated value of jB3j, normalized to the initial field
strength B0 ¼ 10"3 for three different resolutions N ¼ 32;64;128. Our results reveal that the value of B3 grows slowly in time

Fig. 8. From left to right: magnetic energy density for the 2D field loop problem at t ¼ 2 for the 8W, GLM and CT schemes. Results have been computed with
CFL numbers of 0.8 (top) and 0.4 (bottom). Overplotted are 9 isocontours of Az , between 10"5 and 10"3.

Fig. 9. Leftmost panel: time evolution of the volume-integrated magnetic energy density (normalized to its initial value) for the 2D field loop advection
problem. The black and red lines correspond, respectively, to computations carried with Ca ¼ 0:4 and Ca ¼ 0:8. Middle panel: volume-averaged value of jBzj
(normalized to the initial value B0 ¼ 10"3) as a function of time for three different grid resolutions (256, 128 and 64 corresponding to stars, ‘‘%” and plus
signs). Rightmost panel: volume-averaged values of jr ' Bj and jBzj for different values of the a parameter controlling monopole damping at the resolution
Nx ¼ 128 points. (For interpretation of the references in color in this figure legend, the reader is referred to the web version of this article.)
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properly controlled and the scheme does not introduce adequate dissipation across oblique discontinuous features. Here, we
consider a three-dimensional configuration on the unit cube ½"1=2;1=2#3 discretized on 2003 computational zones. The med-
ium is initially at rest (v=0) and threaded by a constant uniform magnetic field lying in the xz plane and forming an angle h
with the vertical z direction, B ¼ B0ðsin hx̂þ cos hẑÞ. A spherical region of high thermal pressure is initialized,

p ¼ pin for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
< r0;

pout otherwise:

(
ð44Þ

We consider two different versions of the same test problem with parameters given in Table 4. In the first one, taken from
Gardiner and Stone [15], the field forms an angle h ¼ p=4 with the z axis and the largest magnetization achieved outside the
sphere is b ¼ 2pout=B2 ¼ 2( 10"2. In the second version, we follow [28] and adopt a larger field strength (with h ¼ 0) yielding
a more severe configuration with b ¼ 2( 10"4.

The over-pressurized spherical region sets a blast wave delimited by an outer fast forward shock propagating (nearly)
radially, see Figs. 14 and 16. Magnetic field lines pile up behind the shock in the direction transverse to the initial field ori-
entation (h ¼ p=4 and h ¼ 0 for the two cases) thus building a region of higher magnetic pressure. In these regions the shock

Table 4
Parameter sets used for the first and second versions of the three-dimensional blast wave problem.

pin pout B0 h r0 tstop

Test 1 102 1 10 p=4 0.125 0.02
Test 2 104 1 100 0 0.1 2:5( 10"3

Fig. 14. Two-dimensional cuts in the xz plane of gas pressure, magnetic and kinetic energy densities for the GLM (top), EGLM (middle) and CT (bottom)
schemes, at t ¼ 0:02 for the first blast wave problem. Pressure values range from 1.0 (white) to 42.4 (black). The magnetic energy ranges from 25.2 (white)
to 64.9 (black) while the kinetic energy density spans from 0.0 (white) to 33.1 (black).
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∇⋅B		CondiCon			

Cell-Centered Staggered 

Pros n  keeps “native” code discretization 
n  better for I.C. and B.C. 
n  easier to extend to AMR grids 
n  Can be used in dimensionally split 
  schemes 
 

n  keep ∇⋅B = 0 to machine accuracy 
n  elegant and consistent discretization 
n  lead to perfectly consistent, well 
   posed Riemann problems 
 

Cons n  require monopole control algorithm 
n  8 wave / Projection:  

Ø Jump of B at face à Riemann  
   problem   
Ø  Break conservation (??) 

n  tricky extension to AMR 
n  more work on B.C. and I.C. 
n  Require solution of multi D Riemann  
   problems (UCT, L. Del Zanna &   
   Londrillo) 



X.	BEYOND	IDEAL	MHD	



Beyond	Ideal	MHD	
•  The	range	of	validity	of	MHD	can	be	extended	by	several	means,	at	the	

cost	of	introducing	addiConal	terms	and	more	complex	algorithms.	

•  One	will	then	have	to	deal	with	different	Gme	scales.	

•  Example	are:	

–  DissipaGve	effects	(viscosity,	Ohmic	dissipaCon,	thermal	conducCon,	etc…)	
à	mixed	hyperbolic	/	parabolic	PDE.	

–  Extended	MHD	including	generalized	Ohm’s	law		(Hall-MHD,	electron	
pressure)	à	dispersive	waves,	non-homogenous	PDE	with	sCff	sources	
(RMHD);	

–  Fluid-parCcles	hybrid	algorithms.	



Diffusion	Processes	
•  Parabolic	(diffusion)	term	describes	transfer	of	momentum	or	

energy	due	to	microscopical	processes	without	requiring	bulk	
moCon.	

•  Examples:	viscosity,	magneCc	resisCvity,	thermal	conducCon.	

•  No	upwinding	is	required	since	parabolic	problems	have	infinite	
propagaCon	speed	à	central	differences	are	OK!	



Explicit	Scheme	for	Parabolic	PDE	
•  However,	explicit	schemes	subject	to	restricCve	constraint:	

•  In	1-D	with	constant	D:	

•  Using	FTCS:	

•  Where	C	=	DΔt/Δx2	is	the	(parabolic)	CFL	number	

•  Stability	demands		C	≤	½	à			Δt	≤		Δx2	/	(2D)			

•  This	is	quite	restricCve	!	



Implicit	Schemes	for	Parabolic	PDE	
•  Using	a	backward	in	Cme,	centered	in	space	(BTCS):	

					has	no	stability	limit	(uncondiGonally	stable	!)	
•  However,	it	leads	to	an	implicit	(linear)	system:	

•  This	is	a	global	operaCon	and	thus	not	can	not	be	efficiently	carried	
out	on	parallel	domains.	

•  AlternaCve	à	Accelerated	explicit	methods	à	



Accelerated	Explicit	Methods	
•  Divide	each	Cme	step	Δt	in	s	sub-steps	based	on	a	polynomial	

sequence	and	require	stability	at	the	end	of	a	cycle	of	s	substeps:	

•  In	pracCce	we	require	the	super-step	to	be	as	large	as	possible,	
exploiCng	properCes	of	orthogonal	polynomial,	Chebyshev	(Super	
Time	Stepping	[STS])	or	Legendre	(Runge-KuSa	Legendre	[RKL]).	

•  The	scheme	is	sCll	explicit	!	

Accelerated methods: Super-Time-Stepping

We redefine �t as a super-step �t =
sP

j=1

⌧
j

:

We require the super-step �t to be as large as possible, while mantainig stability:

|
sY

j=1

(1 + ⌧
j

�) |  1 with � eigenvalue of M
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Runge-KuSa-Legendre	
•  RKL	methods	show	beSer	stability	properCes	and	are	preferred	over	STS.	
•  Choosing	s	sub-steps	we	can	cover	a	Cme	step	equal	to	

					where	Δtexpl	is	the	standard	explicit	method	Cme	step.			
•  The	method	is	easily	parallelizable.	
•  Scaling	on	2D	blast	wave:	

Accelerated methods: Runge-Kutta-Legendre

Final numerical scheme:

Y0 = �

n

Y1 = Y0 + eµ1�tMY0

Y

j

= µ
j

Y

j�1 + ⌫
j

Y

j�2 + (1� µ
j

� ⌫
j

)Y0 + eµ
j

�tMY

j�1 + e�
j

�tMY0 for 2  j  s

�

n+1
= Y

s

The method is stable for

�t  �t
expl

s2 + s � 2

4

where �t
expl

is a standard explicit method’s time step.
Advantages:

2nd order in time and space

Increased stability for not diagonally dominant matrix

Parameter-free
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Blast Wave Execution Times

Repeating the simulation for di↵erent grid resolutions, we compared the
computational time of RKL and a 2nd order explicit method:

Algorithm N

x

Execution Time [s]

Explicit 192 1m : 13s
RKL 192 28s

Explicit 384 18m : 32s
RKL 384 5m : 19s

Explicit 768 4h : 21m : 15s
RKL 768 49m : 17s

Explicit 1536 3d : 5h : 13m : 10s
RKL 1536 10h : 4m : 55s

Expected Scaling:

Explicit: Execution Time / N2
x

RKL: Execution Time / N1.5
x

Luca Rickler Torino, 10 dicembre 2015 18 / 26



Recommended	Books	



Recommended	Codes	

PLUTO1,2		
	

à	a	modular	parallel	code	providing	
a	 mulG-physics	 as	 well	 as	 a	 mulG-
algorithm	 framework	 for	 the	
soluCon	 of	 mixed	 hyperbolic/
parabolic	 conservaCon	 laws	 in	
astrophysics;	
	
	

hkp://plutocode.ph.unito.it		
	

(v.	4.2)	

 1Mignone et al.  ApJS (2007), 170, 228-242;  2Mignone et al, ApJS (2012), 198, 7  
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The kinked jet of the Crab nebula 1107

Figure 5. Volume rendering of the magnitude of the current density
J = ∇ × B/(4π ) for the A3 jet, at t = 89.48 yr showing the formation
of helical structures in the front-end regions.

the injection nozzle, the jet has reached a quasi-stationary structure
with a number of standing conical shocks. In the front-end region,
the dynamics is characterized by a rapid variability and strong in-
teraction between the jet and the remnant. In these regions and for
large magnetizations, the beam takes the shape of a twisted helical
structure; see Fig. 5 showing a 3D view of the current density for
the A3 jet after ∼89.5 years.

3.2.1 Pinching.

A common feature that can be identified all along the jet is the
presence of pinching regions corresponding to the formation of
magnetized shock waves. These can be distinguished, for instance,
by looking at the horizontally averaged electromagnetic and matter
kinetic energies

Ēem(t, z) =
〈

B2 + E2

8π
,χj

〉
(17)

Ēkin(t, z) =
〈
ργ (γ − 1),χj

〉
, (18)

where the weight function χ j selects only material that is mainly
composed by jet particles (see equation 16).

In Fig. 6 we plot Ēem, Ēkin and the maximum Lorentz factor γ max

(taken on xy planes) as functions of z just before the jet has exited the
computational domain or encountered the outer supernova shock.
Average magnetic and kinetic energies exhibit quasi-periodic oscil-
lations along the beam due to jet pinching with the corresponding
formation of internal shocks with large compression factors. These
cycles are more evident in the slowly moving jets that reveal shocks
with larger strengths. Here the frequency of oscillations increases
with σ and magnetic fields tend to dissipate more rapidly.

Figure 6. Average profiles of the electromagnetic (top) and kinetic (mid-
dle) energies normalized to their initial value at z = 0 as functions of the
vertical distance z at different times (reported in the legend) for the six
simulation cases. The bottom panel shows the maximum Lorentz factor. Re-
gions of strong compression are evident by the quasi-periodic oscillations.
The Lorentz factor grows immediately upstream of the shocked flow where
magnetic and kinetic energies are smaller and drops discontinuously in the
post-shock regions.

Indeed, as discussed in Mignone et al. (2010), the presence of a
dominant azimuthal magnetic field component prevents the inner
jet core from interacting with the surrounding, thus substantially
reducing the loss and transfer of momentum. The net effect of this
shielding mechanism is to sustain the kinetic energy at the expenses
of magnetic energy, thus leading to a significant decrease of σ along
the beam. This is best illustrated in Fig. 7, where we show a 2D
colour distribution map of the horizontally averaged σ parameter
normalized to its initial value.

3.2.2 Fragmentation

As the jet advances into the remnant, the propagation is accom-
panied by the formation of highly intermittent unstable struc-
tures during which jet fragmentation is frequently observed. These
events take place on a short time-scale (typically less than a year)
and in correspondence of large kinked deflection where the jet
beam temporarily breaks down forming strong intermediate shock
waves resembling the main termination shock. A typical example is
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