

Solar Orbiter

Exploring the Sun-heliosphere connection

- ESA mission with NASA participation (launcher + two instruments)
- Up to 0.28 AU with dedicated in-situ & remote sensing instrumentation closest approach possible)
- Out of ecliptic observations
- 1st M-class ESA Cosmic Vision (Launch ~Feb. 2019)

Maksimovic : Space plasmas measurement techniques

Interplanetary high energy electron & Solar Radio Bursts

Electrostatic Langmuir waves \rightarrow radio emission

$$F_p(\text{kHz}) \propto \sqrt{N_e(\text{cm}^{-3})}$$

 $N_e \propto 1/R^2 \text{ (au)}$

 $\rightarrow F_p \propto \frac{1}{R}$

All necessary measurements will be available on Solar Orbiter

Adapted from [Ergun et al., 1998]

Outline

D Particles measurements

- Electrons
- Ions & composition
- Energetic particles

Waves measurements

- Magnetic DC & AC sensors
- Measuring DC-LF electric fields
- Measuring AC Electric Field: The Thermal Noise as an example

Surprises, tricky data corrections and future challenges

Astrophysical Plasmas accessibe to in-situ measurements

Maksimovic : Space plasmas measurement techniques

Maksimovic : Space plasmas measurement techniques

Particle Energy Distributions

A plasma particle is defined by

- a mass
- an electric charge
- a speed or kinetic energy

Maksimovic : Space plasmas measurement techniques

Particle Energy Distributions

A plasma particle is defined by

- a mass
- an electric charge
- a speed or kinetic energy

The broad range of energies and fluxes require different instruments ← Faraday cup principle

Maksimovic : Space plasmas measurement techniques

Electric charging in space : an example in the Solar Wind

 $J_e \propto e N_e V_{the}$

For a plasma in quasi-equilibrium with $T_e \sim T_i$

•
$$V_{the} = \sqrt{\frac{2kT_e}{m_e}} \gg V_{thi} = \sqrt{\frac{2kT_i}{m_i}}$$

■ In the Solar Wind $T_e \sim T_p \sim 10^5 K$ $\rightarrow V_{the} \sim 1740 \text{ km/s} \gg V_{thp} \sim 40 \text{ km/s}$

Electric charging in space : an example in the Solar Wind

What are the average electron velocity V_e^* and density N_e^* at the surface of the Sphere?

 $J_e = eN_e^*V_e^*$ can be obtained applying Louville Theorem

 $\frac{1}{2}m_ev'^2 + Ze\phi = \frac{1}{2}m_ev'^2$ $v'_{\min} = \sqrt{2e\phi/m_e} \sim V_{the}/\sqrt{2}$

For a plasma in quasi-equilibrium with $T_e \sim T_i$

•
$$V_{the} = \sqrt{\frac{2kT_e}{m_e}} \gg V_{thi} = \sqrt{\frac{2kT_e}{m_i}}$$

■ In the Solar Wind $T_e \sim T_p \sim 10^5 K$ $\rightarrow V_{the} \sim 1740 \text{ km/s} \gg V_{thp} \sim 40 \text{ km/s}$

And the photoelectron current?

$$J_{ph} = (J_{ph0})(1 + \frac{e\phi}{k_B T_{ph}})e^{-e\phi/k_B T_{ph}}$$

- Depends on the photo-electric properties of the material $- T_{ph} \sim 2$ to 3 eV and $J_{ph} \sim$ few $\mu A/m^2$

Maksimovic : Space plasmas measurement techniques

Finally the potential is obtained by assuming $J_e(\phi) = J_{ph}(\phi)$

To be fully exhaustive one shall include the secondary electrons currents (important closer to the Sun)

11

Salem et al., 2001

Maksimovic : Space plasmas measurement techniques

Electron diagnostic in cold plasmas – The Langmuir Probe

Sweeping V and measuring I

Typical Langmuir probe I-V characteristic

Maksimovic : Space plasmas measurement techniques

• For a plasma in quasi-equilibrium with $T_e \sim T_i$

$$V_{te} = \sqrt{\frac{2kT_e}{m_e}} \gg V_{ti} = \sqrt{\frac{2kT_i}{m_e}}$$

- in the retardation region $I_e \propto N_e eV_{the} e^{-eV/k_BT_e}$
- In the saturation region

$$I_e \propto N_e e V_{the} \left(1 + \frac{eV}{k_B T_e}\right)^{1/2}$$

Segmented langmuir probe in order to measure the ion bulk speed

Measuring the full 3D VDF 'Top Hat' detectors – Principles of Operation

A full 3D Velocity Distribution function is obtained by

- Scaning the energy ($\Delta \Phi$)
- Using the Top hat axis of symmetry and the spacecraft spin

Maksimovic : Space plasmas measurement techniques

Particle Composition :

Add a time-of-flight detector beneath the top hat analyser:

- Top hat section makes E/q selection as before : $E/Ze \propto \Delta \Phi$
- Ions are then accelerated by an electric field into a thin carbon foil
- On passing through the foil the ion knocks out an electron
- The difference in travel time to the detector between the ion and electron can be used to determine the ions velocity, and hence E/M for the ion;
- Combining the two measurements gives M/Q

Particle Composition :

Add a time-of-flight detector beneath the top hat analyser:

Composition Plot – colours represent relative abundance of ions

- Top hat section makes E/q selection as before : $E/Ze \propto \Delta \Phi$
- Ions are then accelerated by an electric field into a thin carbon foil
- On passing through the foil the ion knocks out an electron
- The difference in travel time to the detector between the ion and electron can be used to determine the ions velocity, and hence E/M for the ion;
- Combining the two measurements gives M/Q

Maksimovic : Space plasmas measurement techniques

High-Energy Particle Telescopes

Robert "Bob" Wimmer-Schweingruber University of Kiel, Germany

Energy loss Bethe-Block equation

Javier Rodríguez-Pacheco University of Alcala, Spain

$$\frac{dE}{dx} = -\frac{Z_*^2 e^4 n_e}{4\pi\varepsilon_0^2 V_*^2 m_e} \left[\ln\left(\frac{2eV_*^2}{\langle E_B \rangle}\right) - \ln\left(1-\beta^2\right) - \beta^2 \right] \text{ with } \beta = \frac{V_*}{c}$$

 $\langle E_B \rangle$ is the « first energy ionization » of the target

Maksimovic : Space plasmas measurement techniques

Outline

Particles measurements

- Electrons
- Ions & composition
- Energetic particles

Waves measurements

- Magnetic DC & AC sensors
- Measuring DC-LF electric fields
- Measuring AC Electric Field: The Thermal Noise as an example

Surprises, tricky data corrections and future challenges

Measuring DC/LF Magnetic Fields in space

Maksimovic : Space plasmas measurement techniques

Measuring DC/LF Electric Field in space

Maksimovic : Space plasmas measurement techniques

time

Measuring AC Magnetic Fields in space

The Search Coil Magnetometer (SCM) is an inductive sensor is based on Faraday's law of induction.

SCMs On Solar Orbiter and Solar Probe Plus

 $\mathcal{E} = -N\frac{d\phi}{dt} = -NS\frac{dB}{dt}$

Maksimovic : Space plasmas measurement techniques

Measuring DC/LF Electric Field in space

- If the two probes are equally illuminated then $\phi_1 = \phi_2$ and not necessarily equal to $\phi_{S/C}$
- Actually we do not measure φ₁ and φ₂ but rather V₁ = φ_{S/C} - φ₁ and V₂ = φ_{S/C} - φ₂ where we use the S/C as the potential ground
- If the ground is the same for the two probes then $V_1 V_2 = \phi_2 \phi_1 = 0$

- If an external \overrightarrow{E} is applied then $\phi_1 \neq \phi_2$
- Actually $\phi_2 \phi_1 = \delta_{\phi_E} = \vec{E} \cdot \vec{L_{eff}}$
- So if the experimental setup is appropriate then :

$$\succ V_1 - V_2 = \delta_{\phi_E} = \overrightarrow{E} \cdot \overrightarrow{L_{\text{eff}}}!$$

But life is not so simple because typical electric fields are tiny (a few mV/m) !

Adding a Biasing current on the probe will solve the problem of the density fluctuations in the medium

$$J_e(\phi) = J_{ph}(\phi) + J_{\text{BIAS}}$$

Maksimovic : Space plasmas me

 So if the experimental setup is appropriate and if <u>one injects a BIAS current in the</u> <u>probes</u> then

20

•
$$V_1 - V_2 = \delta_{\phi_E} = \vec{E} \cdot \overrightarrow{L_{\text{eff}}}!$$

$$\frac{V_1+V_2}{2} = \phi_{S/C} - \phi_2 + \frac{\delta_{\phi_E}}{2} \sim \phi_{S/C}$$

Measuring AC Electric Field: The Thermal Noise as an example

Outline

Particles measurements

- Electrons
- Ions & composition
- Energetic particles
- Waves measurements
 - Magnetic DC & AC sensors
 - Measuring DC-LF electric fields
 - Measuring AC Electric Field: The Thermal Noise as an example

Surprises, tricky data corrections and future challenges

Surprises : when an instrument allow unexpected observations Nanodusts with STEREO

Tricky data corrections techniques

Maksimovic : Space plasmas measurement techniques

Current balance in the proton frame

In the charge-center (~cm) frame, we expect zero net current: $n_c v_c + n_h v_h + n_s v_s = 0$, which seems to be so...

Core electron-proton (||) drift

Maksimovic : Space plasmas measurement techniques

Maksimovic : Space plasmas measurement techniques

JT

Core electron-proton (||) drift

Some Challenges with Solar Orbiter

Undertanding the electrostaic environment will be a challenge

The Radio & Plasmas Waves instrument

NASA 'Living with a Star' Mission
Recommended by NAS for 30 years
Most ambitious (\$1.5B) NASA 'Heliophysics' mission

- Launch in 2018
- Mostly in situ instruments
- Perihelion at 9.8 Rs within the Alfven radius

NASA Solar Probe Plus (SPP) mission