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® Accretion discs and jets: what are they
@ Accretion discs in nature
@ Jets in nature

© Accretion disc models
© Hydrostatic equilibrium

® Angular momentum transport

@ Linear stability

@ A Specific application of the MRI to protoplanetary discs
@ Nonideal MRl

©® Direct detection of turbulence in protoplanetary discs



Protoplanetary discs

Credit: C. Burrows and J. Krist (STScl), Artist view
K. Stapelfeldt (JPL) and NASA

® Size 10%-10" m
® Central object: young star (10%° kg)
® Temperature 103-10 K
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Structures in protoplanetary discs

- \Vortices

1.0 0.5 0.0 05 —1.0 Giant anticyclonic vortex

[van-der Marel+ (2013)]



Structures in protoplanetary discs
- Rings

HL tau deprojected
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ALMA (ESO/NAOJ/NRAQO)
Press release 6 Nov. 2014

[Brogan+2015]



Compact binaries

Artist view

® Size 10%-10% m

© Central object: white dwarf,
neutron star, black hole (1039 kg)

® Temperature 10°-10° K
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Active galactic nuclel (blazars, quasars...)

M87

® Size 10'9-10"™ m
® Central object: black hole (10%°-10%° kg=10°-10° Msun)

® Temperature 10°-102 K



Jets In protoplanetary discs

HH212

HH30



Jets in AGNs

Quasar 3CT75
YLA ©cm image (c) NRAD 1996

Centaurus A Quasar 3C175



@ Accretion disc models
© Hydrostatic equilibrium
© Angular momentum transport

© Linear stabllity
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Nonlinear evolution of the MR



The shearing box model
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Boundary conditions

-------------------------------

® Use shear-periodic boundary conditions= b |
«shearing-sheet ~ L : o {
© Allows one 1o use a sheared Fourier Basis e |
@ periodic in y and z (non stratified box) ;2: : '
S | T :

Mean vertical and toroidal fields are conserved e Courtons T Homormann
mean vertical field mean toroidal field zero mean field
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Mean vertical field case

14



lypical simulation

Orbits: 5.973616

Simulation parameters: Re=1000,
Pm=1, f=1000

3D map of vy (azimuthal velocity)
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/ero mean fleld case
="MRI dynamo”
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MRI Simulations

7€r0 mean field shearnng box=aynamo
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Zero net flux MR
[Fromang+ 2007]
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Small scale dynamo
[Schekochihin+ 2006]

Turbulent resistivity effect ? [Riols+2015]
See also J. Walker’s talk on Thursday
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MRI Simulations
Clobal simulations
Global simulations are consistent with box simulations in the same conditions

o~ 107°—1072

[Hawley+ (1995) ; Fromang & Nelson (2006) ; Sorathia+ (2012)]

Turbulent velocity

[Flock+ 2011]
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© A Specific application of the MRI to protoplanetary discs
© Nonideal MR

© Direct detection of turbulence in protoplanetary discs
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The MRI in protoplanetary discs



\onlsatlon Sources | |n protop\anetary dISCS

Thermal
lonisation

~1AU ~10AU

lonisation Fraction
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Protoplanetary disc plasmas are dominated by neutrals
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Dead zone In protoplanetary discs

«Dead zone»

~1AU ~30AU

Thermal
lonisation

3 non ideal effects enter the scene
© Ohmic diffusion (collisions between electrons and neutrals)
© Ambipolar Diffusion (collisions between ions and neutrals)
© Hall Effect (drift between electrons and ions)

Amplitude of these effects depends strongly on location & chemistry
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Non-ideal protoplaneta
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AY discs [Kunz & Balbus 2003

[Armitage 2011]
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I Hall effect dominates in most of the disc midplane
Ambipolar diffusion dominates in the upper layer
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weak ionisation regions

VVINnd-adnven accretion Béthune 20171
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©® Surface layer is sufficiently ionised to drive a wind
@ Wind extract angular momentum and generates accretion

@ Self organisation instead of turbulence in the midplane y
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Detecting the MR
IN protoplanetary discs
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LIne broadening
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® Emission lines from the gas are broaden by:

® Keplerian rotation V7%
® Thermal velocity Ui, =~ Cs << Vi

® Turbulence Viurb = vV Cq
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Figure 6. CO(3-2) high resolution spectra (black line) compared to the median
model when turbulence is allowed to move toward very low values (red dotted—
dashed lines) or when it is fixed at 0.1 km s~! (blue dashed lines). All spectra
have been normalized to their peak flux to better highlight the change in shape.
The models with weak turbulence provide a significantly better fit to the data
despite the fact that the turbulence is smaller than the spectral resolution of
the data.

[Flaherty+2015]
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Measuring line
broadening due to
turbulence requires very
PDrecise measures

of Vi and cg

Turbulence weaker than “ideal
MHD” MRI turbulence

a <107
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Dust settling (/)

The thickness of the dust layer depends on the
competition between settling and turbbulent mixing
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Dust settling (Il)

Assume the disc Is organised into rings

Thick dust disc Thin dust disc

In a thick disc seen inclined, the dark bands are strongly non-axisymmettric
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Dust settling (Ill)

Thin disc model Thick disc model

HL tau, as seen by ALMA observatory
[ALMA partnership 2015]

©® HL tau dust disc is very thin (H/R<0.01) [Pinte+2016]

® Very strong settling (H/R gas=0.1) -} low level of turbulence
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The end

thank you for your attention
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