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1 Accretion disk description

1.1 Thin Disk equilibrium

An accretion disc is typically made of gaz (and possibly dust) orbiting a central object (young star, white
dwarf, neutron star of black hole) of mass M . In this lecture, we assume that the gravity of the orbiting
gas onto itself (self-gravity) is negligible. This is however not necessarily in very massive discs (young
protostellar discs, broad line regions in AGNs). Under these assumptions, the gravitational potential is
simply that of the central object and the equilibrium may simply be written

0 = −1

ρ

∂P

∂R
− ∂Rψ + Ω2R (1)

0 = −1

ρ

∂P

∂z
− ∂zψ, (2)

where (R, z) are cylindrical coordinates and Ω is the angular velocity of the flow, which we assume only
depends on R and ψ = −GM/(R2 + z2)1/2 is the cylindrical potential. A useful quantity will be the
Keplerian frequency which corresponds to the orbital frequency of a test a particle on a circular orbit at
radius R :

ΩK(R) =

√
GM

R3
(3)

In order to simplify the computation, we assume that the disc is locally isothermal : T (R). Under these
assumptions, the sound speed may be written

cs ≡
√
P

ρ
(4)

=

√
kT

µ
(5)
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where k is Boltzmann’s constant and µ is the mean molecular mass. Since the disc is locally isothermal, cs
only depends on R, as the temperature does.

We first start with the vertical equilibrium which we consider close to the disc midplane (z � R) since
we assume the disc is thin :

c2
s∂z log ρ = − GMz

(R2 + z2)3/2
(6)

' zΩ2
K +O(z2) (7)

where we have assumed z � R. We deduce from this the vertical density profile

ρ = ρ0(r) exp
(
− z2

2H2

)
(8)

where we have defined the disc scale height

H ≡ cs/ΩK . (9)

Hence the thin disc approximation H � R implies that the disc is cold, or in other words that cs � RΩK .
This is is the case for many discs in astrophysical systems (protostellar disc, cataclysmic variable, outer
part of X-ray binaries).

In the radial direction we first have to compare the radial pressure gradient to the gravitational potential

0 = −1

ρ

∂P

∂R︸ ︷︷ ︸
∼c2s/R

− ∂Rψ︸︷︷︸
∼Ω2

KR

+Ω2R (10)

(11)

Hence, the pressure gradient is (H/R)2 smaller than the gravitational potential and can be neglected in
the thin disc approximation. This means that the disc is to a very good approximation a keplerian disc
Ω = ΩK .

1.2 Accretion theory in a thin disk

1.2.1 General conservation equations

The accretion of mass in astrophysical discs is easily describe by the equation of mass and angular
momentum conservation. Let us start with mass conservation :

∂ρ

∂t
+∇ · ρu = 0 (12)

which we average vertically defining · as

Q =

ˆ
dφ

ˆ z=+h

z=−h
dz Q. (13)

which leads to :

∂Σ

∂t
+

1

R

∂

∂R
Rρur +

[
ρvz

]+h

z=−h
= 0 (14)
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where Σ ≡= ρ is the surface density of the gas.

The equation of angular momentum conservation may be written as

∂(ρRuφ)

∂t
+∇ ·

[
ρRuφu−RBφB +

(
P +

B2

2

)
eφ

]
= 0 (15)

We separate uφ into deviations plus mean flow :

ur = vr (16)
uφ = ΩKR + vφ (17)
uz = vz (18)

and we assume these deviation are small compared to the keplerian flow (v � ΩR). Angular momentum
reads

ΩKR
2∂ρ

∂t
+
∂(ρRvφ)

∂t
+∇ ·

[
ρR2ΩKv + ρRvφv −RBφB +

(
P +

B2

2

)
eφ

]
= 0 (19)

We then apply the averaging procedure (13) defined above to get

ΩR2∂Σ

∂t
+

1

R

∂

∂R
R

(
R2Ωρvr +Rρvφvr −RBφBr

)
(20)

+

[
R2Ωρvz +Rρvφvz −RBφBz

]+h

z=−h

= 0 (21)

Angular momentum conservation can then be combined with mass conservation (14) to get a final equation
expressing the mass accretion rate ρvr as a function of the radial and surface stresses

ρvr
∂

∂R
ΩKR

2 +
1

R

∂

∂R
R2[ρvφvr −BφBr︸ ︷︷ ︸

Radial stress

] +

[
Rρvφvz −RBφBz

]+h

z=−h︸ ︷︷ ︸
Surface stress

= 0. (22)

This demonstrates the close relationship between the accretion rate and the transport of angular momentum
by the stresses. Angular momentum can be transported outward in the disc by the radial stress, or evacuated
from the disc by a torque applied at the disc surface, as for example when a magnetised wind is present.

1.2.2 Viscous theory

The viscous theory assumes no wind is present at the disc surface. In order to solve the long-term
evolution of the disc, one needs to express the radial stress

Wrφ = ρvφvr −BφBr (23)

as a function of vertically average quantities such as Σ, P , etc. Historically, and based on a purely dimen-
sional argument (Shakura & Sunyaev 1973), it is usually assumed that

Wrφ = αP , (24)

where α is a dimensionless constant. Physically, it can however be justified a bit more : let us consider
turbulent fluctuations v in a thin disc. The fluctuation are confined in the disc thickness H and they are
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excited at the Keplerian frequency ΩK . Hence, we expect v ∼ HΩK and therefore Wrφ ∼ ρv2 ∼ ρH2Ω2
K .

Using (9), one gets Wrφ ∼ ρc2
s ∼ P . Hence, thanks to the vertical equilibrium of a thin disc, Shakura &

Sunyaev 1973 prescription is fully justified !

This prescription may be considered as a viscous theory. Indeed, Wrφ = αP = αΣcsHΩK . Since ΩK is
the local shear rate of the flow, the stress in the angular momentum conservation equation shows up as a
viscous stress νtΣΩ with a turbulent viscosity coefficient νt = αcsH.

Plugging this prescription in (22) leads to

ρvr = − 1

R∂R(ΩKR2)

∂

∂R
R2αc2

sΣ (25)

Which can be combined with mass conservation to get an equation on Σ :

∂Σ

∂t
=

1

R

∂

∂R

[
1

∂R(ΩKR2)

∂

∂R
R2αc2

sΣ

]
(26)

Which essentially constitutes a diffusion equation for the surface density. The diffusion timescale associated
to accretion can be estimated using the fact that cs = ΩKH. One finds

τvisc ∼ αΩ

(
H

R

)2

� ΩK (27)

Accretion therefore occurs on timescales much longer than the orbital timescale in thin discs. This is usually
a problem for simulations trying to capture the phenomenon of accretion. However, it allows us to separate
accretion from dynamics occuring at the local orbital frequency, by stating that accretion is essentially
inexistent on this timescale.

1.3 Estimated accretion time

2 Accretion disc stability

2.1 Local effective gravity

The Hill’s approximation is essentially a local approximation designed to capture the physics of a patch
of gas or particles orbiting a central object of any sort.

Let us consider particles (stars, fluid particles, dust), on a exactly circular orbit in a gravitational
potential ψ. Each particle is at a radius R from the center of mass O, and orbits the center with an angular
velocity ΩK(R).

The radial equilibrium for the particles may be simply written

Ω2R− ∂Rψ = 0. (28)

Let us consider a fiducial radius R0 and a rotating frame R′ attached to the circular orbit at R0. The
R′ is rotating at Ω0 ≡ ΩK(R0) and we attach cartesian coordinates (x, y, z) so that x is align with the
radius and y with the azimuth (Fig. 1).
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Figure 1 – Rotating frame on a circular orbit at R0

Let us caracterise the dynamics of the flow in the vicinity of the fiducial point R0, by assuming that
x, y, z � R0. For this, we have to know the effective gravity g in R′. In the radial (x) direction, we have :

gx = −∂Rψ + Ω2
0R (29)

= − GMR

(R2 + z2)3/2
+ Ω2

0R (30)

= −GM
R2

+O
( z2

R2

)
+ Ω2

0R (31)

' −Ω2
K(R)R + Ω2

0R (32)

' R
[
Ω2

0 − ΩK(R0 + x)2
]

(33)

' R

(
Ω2

0 −
[
ΩK(R0) + x

dΩK

dR
+O

( x2

R2

)]2
)

(34)

' −2RΩK(R0)x
dΩK

dR
(35)

' −2xΩ2
0

d log ΩK

d logR
. (36)

It is customary to write q = −d log ΩK/d logR. In the case of a Keplerian disc, we have q = 3/2.

The equilibrium in the vertical direction is much simpler since no centrifugal acceleration is involved :

gz = −∂zψ (37)

= − GMz

(R2 + z2)3/2
(38)

= −GMz

R3
0

+O(z2/R2) (39)

' −Ω2z. (40)

The effective gravity in the rotating frame derives from a simple potential which may be written

ψeff = Ω2
(
− qx2 +

1

2
z2
)

(41)
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The effective potential therefore represents a saddle at the point (x, z) = 0, and it "looks" unstable in
the radial (x) direction. Dynamically, as we will see, conservation of angular momentum (=Coriolis forces)
prevents this from happening.

2.2 Local stability

2.2.1 Hydrodynamic stability

Let us now consider a particle evolving in the frame R′ under the influence of the effective gravity and
the Coriolis force. The particle is initially at rest at (x, y) = 0. Magnetic fields are neglected in this first
approach.

The equation of motion for the fluid particle may be written

d2x

dt2
= 2qΩ2

0x+ 2Ω0
dy

dt
(42)

d2y

dt2
= −2Ω0

dx

dt
(43)

d2z

dt2
= −Ω2

0z (44)

We first note that the vertical and horizontal equations of motion are separable. In the vertical direction,
it describes oscillations of the fluid particle around the midplane at frequency Ω0.

In the horizontal direction, the equations describes epicycles. To show it, let us first integrate (43) :

L =
dy

dt
+ 2Ω0x (45)

where L is a constant of motion. By looking back at the original (cylindrical) equations, we can see that
L is nothing else but the local equivalent of the particle angular momentum. Our particle being initially
in equilibrium at (x, y) = 0, it has L = 0 and we can write the radial equation of motion as

d2x

dt2
= (2qΩ2

0 − 4Ω2
0)x (46)

hence, our effective gravitational potential which was initially unstable is stabilised thanks to the conser-
vation of angular momentum, provided that 0 < q < 2 (q = 3/2 for astrophysical discs).

The oscillations described by this particle have a frequency

ω2 = 2Ω2
0(2− q) (47)

≡ κ2

This characteristic frequency is named epicyclic frequency. In the particular case of a Keplerian disc
(q = 3/2) we find κ2 = Ω2 i.e. the epicyclic frequency coincide with the orbital frequency. As a result,
orbits are closed, a well known property of the two body problem (e.g. Fig. 2)

2.2.2 Magnetohydrodynamic stability

As we have seen, protoplanetary discs are hydrodynamically stable at the linear level. In MHD, however,
things start to be a bit more interesting.
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Unperturbed orbit
Perturbed orbit

Figure 2 – Epicyclic oscillations of a fluid particle orbiting a point mass resulting in an closed elliptic
orbit.

Let us plunge our disc in an external and constant magnetic field B0 which we assume is vertical.
Assuming we still consider infinitesimal displacements around the equilibrium position of the fluid particles,
the velocities are infinitely small, and the induction equation for magnetic fluctuations δb reads

∂δb

∂t
= B0

∂v

∂z
. (48)

Clearly, the stability will now depends on how we move the particles with respect to each other. Let us
consider a set of particles initially at (x, y) = 0 and let us perturb these particle with a vertical harmonic
perturbation

x = x0 exp(ikz) (49)

the resulting magnetic perturbation will simply be
∂δb

∂t
= ikB0v, (50)

which we can integrate in time

δb = ikB0x. (51)

In order to model how the field impacts the dynamics, we have to include the Lorentz force FL in the
equation of motion. In the horizontal direction, only the magnetic tension term B · ∇B appears, so we
have

FL
ρ

=
B0 · ∇δb

4πρ
(52)

=
B0∂zδb

4πρ
(53)

= −k
2B2

0

4πρ
x (54)

= −V 2
Ak

2x, (55)
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where VA is the Alfvén speed. The horizontal equation of motion are therefore reduced to

d2x

dt2
= 2qΩ2

0x+ 2Ω0
dy

dt
− V 2

Ak
2x (56)

d2y

dt2
= −2Ω0

dx

dt
− V 2

Ak
2y (57)

where it is clear that the magnetic forces are acting as a restoring force (hence the usual representation
of a spring for the Lorentz force). Note also that angular momentum conservation is now broken by the
azimuthal tension force. It is this effect which leads to an instability.

To show this, let us assume x = x exp(σt). The equations of motion lead to the following eigenvalue
problem

(σ2 + V 2
Ak

2)x = 2qΩ2
0x+ 2Ω0σy (58)

(σ2 + V 2
Ak

2)y = −2Ω0σx (59)

Which allows us to get the dispersion relation :

(σ2 + V 2
Ak

2)2 − 2qΩ2
0(σ2 + V 2

Ak
2) + 4Ω2

0σ
2 = 0 (60)

which allows us to recover epicyclic oscillations when VA = 0 with σ2 = −2Ω2
0(2 − q) = −κ2 and pure

Alfvénic oscillations when Ω0 = 0 with σ2 = −V 2
Ak

2.

Expanding this dispersion relation leads to

σ4 + σ2
(
κ2 + 2V 2

Ak
2
)

+ V 2
Ak

2
(
V 2
Ak

2 − 2qΩ2
0

)
= 0 (61)

This dispersion relation leads to an instability when σ2 is real, i.e. when

V 2
Ak

2 − 2qΩ2
0 < 0. (62)

This instability is the magneto-rotational instability (or MRI). It works when the magnetic tension force
is not too strong, as suggested by (62). It is possible to solve the full dispersion analytically to get the
eigenvalues (see Fig. 3). When VAk <

√
2qΩ0, positive eigenvalues are found which are the signature of the

MRI. The maximum growth rates are obtained for VAk =
√

2qΩ0/2 with σmax = qΩ/2. Above the limit
(??), the unstable branch becomes an stable Alfvén wave, which shows that the MRI is mostly an Alfvénic
perturbation. In addition to this pair of branches, we find a pair of epicyclic modes which are stable for all
kVA (Fig. ??), and have a non-zero frequency for VA = 0.

The physical interpretation of the MRI is straightforward : consider 2 fluid particles attached to a
vertical field line and assume we slightly move these particles radially. At first, they will start an epicyclic
motion and drift azimuthally (Fig.4). As they drift away, however, the azimuthal magnetic tension will act
as a spring bringing back the particles together, slowing down the inner particle and accelerating the outer
particle. This results in a loss of angular momentum for the inner particle, which falls further down, and
reversely for the outer particle. This mechanism can only work if the radial magnetic tension is sufficiently
weak (as stated by eq. 62). Otherwise, the particles come back to their initial point resulting in an Alfvénic
oscillation.
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Figure 3 – Real part (black) and imaginary part (red dashed line) of the solutions of (61) with q = 3/2.
The MRI appears for weak enough fields VAk <

√
3Ω0.

Figure 4 – Physical representation of the MRI mechanism (see text).
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