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Abstract. This chapter offers, first, an introductory walk through the notions related
to scaling phenomena and intuitions behind are gathered to formulate a tentative
definition. Second, it introduces the mathematical model of self-similar processes with
stationary increments, understood as the canonical reference to describe scaling. Then,
it shows how and why the wavelet transform constitutes a powerful and relevant tool
for the analysis (detection, identification, estimation) of self-similarity. It is finally
explained why self-similarity is too restrictive a model to account for the large variety
of scaling encountered in empirical data and a review of the various models related
to scaling – long range dependence, local Hölder regularity, fractal and multifractal
processes, multiplicative or cascade processes – is proposed. Their interrelations and
differences, as well as estimation issues, are discussed. A set of Matlab routines has
been developed to implement the wavelet-based analysis for scaling described here. It
is available at www.ens-lyon.fr/∼pabry.

1 Introduction and Motivation

1.1 Scaling Phenomena

Power laws, scaling laws, scaling phenomena or, simply, scaling, recently became
a very fashionable topic. Indeed, scaling behaviors were observed or studied or
used as description paradigms in a large collection of research works covering a
wide variety of different domains or applications. It is worth noting that those
applications may be related either to natural phenomena or to data resulting
from mankind’s activities. For the first category, one can, for instance, mention
hydrology [10] with the study of variabilities of water levels in rivers, hydrody-
namic with the study of developed turbulence [24,20], statistical physics with
the study of systems having long range interactions [44], microelectronics with
1/f noises in semi-conductors [9,23], geophysics and fault repartitions or geolog-
ical layers [43,42], biology and physiology [52] with human rhythms variabilities,
heart beat [45] or gait [26] for instance. For the second category, one can find
human geography and population repartition in cities or continents [19], infor-
mation flows on network and mainly computer network teletraffic [35], stock
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market volatility or currency change rates fluctuations [29,51]. Very often, scal-
ing in data is a crucial observation since it can be tied to key properties of the
systems (e.g., high volatility in markets or large waiting times and congestions
in computer network traffic or pathologies in body rythms. . . ).

The notion of scaling, however, remains defined poorly or in a loose way and
may be related to a variety of different properties of a system or a process. A
possible common tentative definition for scaling can be formulated through a
negative statement: there is no characteristic scale (of time or space. . . ) in the
studied system or process. In other words, this is no longer possible to identify
any scale that plays a privileged role compared to others, or equivalently, all
scales play identical roles and are of equal importance in the dynamics of the
analyzed system or process. Scaling, therefore, correspond to situations where
the whole can not be (statistically) distinguished from any of its subpart. This is
commonly associated to the picture of geometric fractal object, obtained through
the iteration of an identical construction procedure.

1.2 Random Walks and Self-similarity

From a data analysis (or signal processing) point of view, scaling in time series
implies that the usual intuitive search techniques for characteristic scales are
to abandoned and replaced instead by new ones aiming at evidencing relations,
mechanisms between scales or involving a wide range of scales. This also means
to abandon the use of models relying on the existence and definition of a char-
acteristic scale (e.g, Markow chains, Poisson models, models with exponential
autocorrelation functions,. . . ). The canonical reference mathematical models for
scaling are that of Random Walks and Self-Similar processes, and more partic-
ularly, the popular fractional Brownian motion. This will be introduced with
details in Sect. 2.1.

1.3 Wavelets

The practical use and analysis of self-similar processes present however two major
difficulties: they are non stationary and are characterized by long range depen-
dence or long term correlations or long memory. Such statistical features turn
the analysis of self-similar processes into an uneasy and non standard task. To
overcome such difficulties, it has been shown recently in a collection of papers
[32,33,46,11,31,2,4,47] that wavelet transforms constitute ideal tools for the anal-
ysis of scaling. Wavelet analysis will be introduced in Sect. 2.2. More precisely,
the wavelet analysis can be considered as “matched” to self-similar processes in
the sense that wavelet coefficients exactly reproduce, from scale to scale, the self-
replicating statistical structure of such processes. This will be made explicit in
Sect. 2.3. Section 2.4 explains how those statistical properties of the wavelet co-
efficients are to be used to design tools for the analysis (detection, identification
and estimation) of scaling phenomena.

https://www.researchgate.net/publication/2349455_Wavelets_for_the_Analysis_Estimation_and_Synthesis_of_Scaling_Data?el=1_x_8&enrichId=rgreq-28f0c97bf0f560ca45deee13c73b6efc-XXX&enrichSource=Y292ZXJQYWdlOzIyNTM1MDY0MjtBUzoyMzI5MzAyMTU3MjMwMTVAMTQzMjU0NjMwMDAxNw==


36 P. Abry

• Beyond self-similarity
Self-similarity is a mathematically well-behaved model. Its definition how-

ever implies numerous constraints seen as limitations in the practical 0 of em-
pirical data. Obviously, it cannot account for the large variety of scaling exist-
ing amongst actual empirical data. Section 3 will therefore allow a larger part
to variations around self-similarity commonly used to describe scaling, such as
long range dependence, fractal sample path, multifractal processes, multiplica-
tive processes, infinitely divisible processes and cascades. . . and will underline
their mutual interrelations, common denominators and differences.

• Note
This chapter mainly intends to be an introductory walk in the land of scaling

phenomena and scaling laws. Its aim is to provide the reader with a synthetic and
comprehensive overview of their related mathematical models and with a quick
start to their wavelet-based analysis. Technical details as well as mathematical
proofs can be found in references given along the text.

• Matlab Routines
All the analysis procedures (detection, identification, estimation) described

here as well as synthesis ones presented elsewhere are implemented in Matlab
routines available at www.ens-lyon.fr/˜pabry or www.emulab.ee.mu.oz.au/
˜darryl.

2 Self-similarity and Wavelets

2.1 Self-similarity

• Random Walks
The simplest model that can be thought of to model scaling phenomena

is that of the standard random walk commonly involved is the pedagogical(!)
description of a drunkard walk or more generally in that of diffusion phenomena.
Let X(t) denote some physical quantity of interest, a random walk consists in
going from position X at time t to position X + δX at time t + τ by making an
elementary step (or increment) δX(τ, t):

X(t + τ) = X(t) + δX(τ, t) ,∀τ ≥ 0 . (1)

Without loss of generality, we assume in this whole text that X(0) ≡ 0 and
EδX(τ, t) ≡ 0,∀ τ,∀t.

For normal (drunkard and) diffusion, one usually assumes for the increments
the following statistical properties:
A1 : The {δX(τ, t), t ∈ R} form random processes that are stationary with
respect to the t variable. Their distributions are identical, do not depend on t
but functionally depend on τ ,
A2 : The steps {δX(τ, t), t ∈ R} are mutually independent, i.e., for t1 ≤ t2 ≤
t3 ≤ t4,

p2[(X(t4) − X(t3)).(X(t2) − X(t1))] = p1(X(t4) − X(t3)) p1(X(t2) − X(t1)).



Scaling and Wavelets: An Introductory Walk 37

where the pi(·) denote the (joint) probability density functions. This means that
the random variables δX(τ, t) and δX(τ ′, t′) are statistically independent as soon
as t′ > t + τ . In other words, once the step δX(τ, t) has been performed, one
gains no extra information on the next following step.
A3 : The {δX(τ, t), t ∈ R} form jointly Gaussian processes.

Though apparently simple and intuitive, those three properties together im-
pose severe constraints on the walk X, and even define it in a unique manner
as the ordinary Brownian motion. For instance, they imply a linear behavior of
the variance of X (or of its increments) with respect to time:

E|X(t) − X(0)
︸ ︷︷ ︸

≡0

|2 = 2DX |t|, or, equivalently E|δX(τ, t)|2 = 2DX |τ |. (2)

Those behaviors, known as the celebrated Einstein’s relations, constitute the
signature of scale invariance or scaling phenomenon in the random walk: no
characteristic scale exists or can be identified that would limit, or bound, or
indicate a cut-off in the development of the walk nor plays any specific role.

However, empirical data very often exhibit significant departures from those
linear behaviors. The so-called anomalous diffusion phenomena, for instance, are
characterized by:

E|X(t) − X(0)|2 = 2DX |t|γ , 0 < γ < 2, (3)

which can be seen as generalizations to (2) above, read as a power-law with
exponent that takes the specific value 1. To account for the departure from
a linear behavior, to bypass limitations resulting from A1, A2 and A3 and
more generally to enlarge the framework of ordinary random walk and Brownian
motion, one is naturally lead to that of self-similarity.

• Self-similar processes
A process X is said to be statistically self-similar, with self-similarity param-

eter H > 0, if [41]:

∀c > 0, {cHX(t/c), t ∈ R} fdd= {X(t), t ∈ R} (4)

where fdd= means equality of all the finite dimensional distributions. This means
that the sample paths (t, X) of the process X(t) and those (t/c, cHX) of the
process cHX(t/c) are statistically indistinguishable. In other words, the process
X is statistically similar to any of its dilated templates. Therefore, no charac-
teristic scale of time can be identified on these processes, self-similarity is hence
a model for scaling behavior. This is illustrated on Fig. 1.

A major consequence of self-similarity also lies in the fact that the moments
of the process, when they exist (we do nit discuss existence issues in this text),
behave as power laws with respect to time,

E|X(t)|q = E|X(1)|q|t|qH , (5)



38 P. Abry

Fig. 1. Sample path of a self-similar process. Starting with the sample path of a self-
similar process, if one performs a dilation of the time axis of factor 1/c and a dilation
on the amplitude axis of factor cH , one obtains a new sample path that is (statistically)
indistinguishable from the original one.

whose exponents are all controlled by the self-similarity parameter H. Besides
the connection between scaling and power law, those relations also show that
self-similar processes are non stationary ones.

• Self-similar processes with stationary increments
Because with actual empirical data, the use of non stationary models is a

major difficulty, one often restricts the class of self-similar processes to that of
self-similar processes with stationary increments (hereafter, H-sssi processes). A
process is said to posses stationary increments if:

{δX(τ, t) ≡ X(t + τ) − X(t), t ∈ R} fdd= {δX(τ, 0) ≡ X(0 + τ) − X(0) ≡
X(τ)},∀τ. (6)

Self-similarity and stationary increments together yield that the fundamental
equation (5) above can be rewritten on the increments (for all finite moments):

E|X(t + τ) − X(t)|q = E|X(1)|q|τ |qH . (7)

In keeping with the general framework of random walks (cf. (1)), the class
of H-sssi processes enlarges that of ordinary Brownian motion and ordinary
random walk through the replacements of assumptions A1, A2 and A3 with:
B1: The {δX(τ, t), t ∈ R} form random processes that are stationary with re-
spect to the t variable.
B2: The steps {δX(τ, t), t ∈ R} satisfy, ∀H > 0,

∀c > 0, {cHδX(τ/c, t/c), t ∈ R} fdd= {δX(τ, t), t ∈ R, }. (8)
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Obviously, B1 is identical to A1 while B2 gathers A2 and A3 . This latest
implies that the steps of the random walk no longer need to be independent
(they can even exhibit long memory as detailed below) nor Gaussian (they can
have any stable [41] marginal distribution, i.e., infinite variance distributions, see
section 3). B. Mandelbrot, who significantly contribute to the promotion of the
use of H-sssi processes (fractional Brownian motion [27], Lévy stable motions
[29]) in applications (turbulence, finance, . . . ), named those two variations the
Joseph’s effect and the Noah’s effect, respectively [29], after the celebrated bib-
lical characters. One can, moreover, consider situations, problems or time series
where the two difficulties occur jointly and simultaneously. Technically, H-sssi
processes can be written as [41]:

X(t) =
∫

R

f(t, u)M(du), (9)

where M(du) denotes an α stable stochastic measure (where α, 0 < α ≤ 2,
stands for the stability index, and α = 2 corresponds to the Gaussian case).
This definition means that the process X can be read as a weighted sum of in-
dependent α stable random variables. Technically, this implies that, for a fixed
t, X(t) is a α stable random variable, M therefore controls the marginals of the
process, or in other words, its static properties. The weighting kernel function
f(t, u) controls the statistical dependences of X and hence its joint statistics,
or in other words, its dynamical properties. For well chosen forms of the kernel,
[18,34,41], X is a self-similar process with stationary increments. For instance,
the celebrated fractional Brownian motion (fBm), which is, up to a normaliza-
tion, the only Gaussian H-sssi process, corresponds to the choice of a Gaus-
sian measure: M(du) = dB(u) and of the specific fractional integration kernel
f(t, u) = (t − u)d

+ − (−u)d
+, where (u)+ = u if u ≥ 0 and 0 else and where

d = H − 1/2 controls the long memory of the process (hence its dependence
structure) [27]. Lévy stable processes (that include the ordinary Brownian mo-
tion) are characterized by independent increments and correspond to f(t, u) = 1
if 0 ≤ u ≤ t and 0 elsewhere. Linear fractional stable motion is characterized
by an infinite variance stable distribution M(du) (i.e., α strictly smaller than 2)
and by the same kernel as that of fBm with d = H − 1/α; it therefore gathers
simultaneously the two difficulties mentioned above.

• Self-similar processes with stationary increments
and finite variance

Self-similarity, stationary increments and finite variance together impose that
[41,27]:

0 < H < 1. (10)

Hence, for H-sssi processes with finite variance, the choice q = 2 in the relation
above (5) accounts for the anomalous behavior reported in (3) with 0 < γ =
2H < 2.

Moreover, for H-sssi process X with finite variance (and with zero mean
and X(0) ≡ 0), one can show that the covariance function necessarily takes the
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following form:

EX(t)X(s) =
σ2

2
(

|t|2H + |s|2H − |t − s|2H
)

. (11)

with σ2 = E|X(1)|2 and that the correlation function of the increment process
reads:

EδX(τ, t)δX(τ, t + s) =
σ2

2
(

|τ + s|2H + |τ − s|2H − 2|s|2H
)

. (12)

• Long range dependence or long term correlations
or long memory

From this relation, one can infer the asymptotic behavior of the covariance
function on the increment process in the limit of large s (i.e., s → +∞, s ≫ τ):

EδX(τ, t)δX(τ, t + s) ∼ σ2

2
2H(2H − 1) τ2s2(H−1). (13)

Such a power law decrease of the covariance function above refers to a notion
known as long range dependence, or long term correlations [10,41]. A stochastic
stationary process Y is said to be long range dependent if its spectrum behaves
asymptotically as a power law in the limit of small frequencies or, equivalently,
if its covariance function behaves asymptotically in the limit of large lag as a
power law:

ΓY (ν) ∼ C|ν|−γ , |ν| → 0, 0 < γ < 1,
EY (t)Y (t + s) ∼ C ′|s|−β , |s| → +∞, 0 < β = 1 − γ < 1.

}

(14)

This asymptotic power law decrease of the autocorrelation function is to be com-
pared to the exponential one encountered in more usual processes (like Markov
processes): an exponential decrease, by definition, implies a characteristic time
while a power law behavior does not, meeting again the intuition of the absence
of characteristic scale of time. For long range dependent processes, the autoco-
variance function decreases so slowly that its sum diverges, i.e., for A > 0,

∫ ∞

A
EY (t)Y (t + s)ds = ∞.

This implies that the correlation between any two samples of the process cannot
be neglected without missing something crucial in the analysis of the process,
no matter how far apart one from the other they are. Long range dependence
among its increments constitute a major difficulty in the analysis of a self-similar
process.

Among the statistical community, where its formal definition was first pro-
posed, long memory is often studied through the so-called aggregation procedure.
Let Y (T )(t) be the version of the process Y aggregated in a window of size T :

Y (T )(t) =
1
T

∫ (t+1)T

tT
Y (u)du. (15)
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The long memory of the process Y (t) results in a asymptotical power law be-
havior of the variance of the aggregated process:

E|Y (T )(t)|2 ∼ T−β , T → ∞, (16)

A large family of estimators has been based on this asymptotic property.
Long memory can be defined independently from self-similarity and in itself,

is a model for scaling observed in the limit of large scales (see Sect. 3 for details).
However, increments of H-sssi processes, when H > 1/2, exhibit long memory
as proven by (13) above. Therefore, the two notions are subtly related.

• 1/f-Processes
So-called 1/f -processes have also been widely used to model scaling phe-

nomena. A stationary process is said to posses a 1/f -spectrum if its spectrum
behaves as a power law in a wide range of scales:

ΓX(ν) ∼ C|ν|−γ , 0 ≤ νm ≤ |ν| ≤ νM , νM/νm ≫ 1, γ > 0. (17)

In this setting, all frequencies are playing equivalent roles. Moreover, such spec-
trum satisfy ∀λ > 0,ΓX(λν) ∼ λ−γΓX(ν), hence the connection with scale
invariance.

Despite its being a non-stationary process, fBm is often naturally consid-
ered as the reference for 1/f -Processes. However, connections are somehow in-
tricate. . . The increment process of fBm can be regarded as the output of a
linear time invariant filter whose input is fBm and whose impulse response reads
ψδτ (t) = δ(t + τ) − δ(t):

δX(τ, t) = (ψδτ (·) ∗ X(·))(t),

where ∗ stands for the convolution. The standard Fourier relation of the linear
time invariant filter yields:

ΓδX(τ,·)(ν) = |Ψδτ (ν)|2ΓX(ν),

where Ψδτ (ν) = 1 − exp(ı2πτν). In the limit |τν| ≪ 1, |Ψδτ (ν)| ∼ |2πτν| and
ΓδX(τ,·)(ν) ∼ |ν|−(2H−1), and hence, from the relation above one heuristically or
qualitatively associate to fBm a spectrum of the form ΓX(ν) ∼ |ν|−(2H+1), hence
a 1/f -spectrum. This correspondence has been formulated in various frameworks
including that of wavelets, see, e.g., [32].

• Local regularity of the process
Exploring the other limit, that of fine scales, i.e., s ≪ τ, s → 0, one obtains

that the autocovariance function of X behaves as:

EδX(τ, t)δX(τ, t + s) ∼ σ2 |τ |2H (1 − |τ |−2H |s|2H). (18)

Such a power law behavior again traces back to the absence of characteristic
scale (in the limit of small scales). Since δX(τ, t) is a stationary process, the
equation above also straightforwardly yields:

E|δX(τ, t + s) − δX(τ, t)|2 ∼ σ2 |s|2H , s → 0, (19)
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which gives indications with respect to the local (ir)regularity of the sample
paths of X.

Indeed, local regularity of sample paths of stochastic processes or of functions
is usually measured in terms of Hölder exponent: this consists in comparing X at
time t against a power law function. A process X is said to have Hölder regularity
h ≥ 0 at time t if their exists a local polynomial Pt(s) of degree n = ⌊h⌋ and a
constant C such that:

|X(t + s) − Pt(s)| ≤ C |s|h. (20)

For 0 ≤ h < 1, the regular part of X at time t reduces to Pt(t) = X(t), yielding
the following regularity characterization:

|X(t + s) − X(t)| ≤ C |s|h. (21)

Heuristically, the Hölder h exponent describes the roughness of the sample path
of X: h between 0 and 1 indicates that the sample path is everywhere continuous
but nowhere differentiable, h close to 1 betrays a smooth and regular behavior
and conversely, h close to 0 implies sharp roughness and large variability. For
1 < h < 2, the same arguments apply to the first derivative of the sample path,
and so on.

Self-similarity with stationary increments and finite variance, and more pre-
cisely the central relation (7) for the increments together with Kolmogorov’s
regularity criterion1 shows that the local regularity of each sample path of the
fractional Brownian motion (for which all moments exist for q > −1) is constant
along time and controlled by the parameter H: h = H. From (19) above, one
sees that the same holds for the increment process of fractional Brownian mo-
tion. Processes with sample paths characterized by a constant Hölder exponent,
are often referred to as monofractal processes. Monofractal processes constitute
therefore a model for scaling observed in the limit of small scales. For further
details, see e.g., [37].

2.2 Wavelet Analysis

• Continuous wavelet transform
The wavelet coefficients of the so called continuous wavelet transform (CWT)

[17,30] are defined as the results of comparisons, by means of inner products,
between the process to be analyzed X and a family of functions, the wavelets
ψa,t:

TX(a, t) = ⟨X,ψa,t⟩, (a, t) ∈ (R+, R). (22)
1 Kolmogorov’s criterion (see for example [38]): If {X(t) : t ∈ R} is a stochastic process

with values in a complete separable metric space (S, d), and if there exists positive
constants β, C, ϵ such that for all s, t ∈ R

Ed(Xs, Xt)β ≤ C|s − t|1+ϵ

then there exists a continuous version of X. This version is Hölder continuous of
order θ for each θ < ϵ/β.
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The wavelets are dilated and translated templates of a reference pattern ψ called
the mother wavelet:

ψa,t(u) =
1
|a|ψ(

u − t

a
). (23)

Figure 2 shows dilated templates of a single mother wavelet. Note that some
definitions prefer a 1/

√

|a| instead of 1/|a| normalization term, mainly because
it ensures energy preservation. For the analysis of scaling phenomena, however,
the choice 1/|a| is more convenient. The function ψ is usually required to be
bounded and to have time and frequency supports that are either bounded or
decrease very fast, jointly in both domains, time and frequency. To ensure that
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Fig. 2. Translated and dilated wavelets and their corresponding Fourier transforms.
Left, dilated versions of the same mother-wavelet (Daubechies6) with dilation factors
1, 2 and 4, and, right, the corresponding Fourier transforms.



44 P. Abry

the wavelet transform is invertible, ψ moreover has to satisfy a so-called admis-
sibility condition whose weak form reads:

∫

R

ψ(t)dt = 0. (24)

Hence, ψ is a zero-mean function that has to oscillate and exist on a narrow time
support. This is therefore a small wave: a wavelet.

This is because the mother wavelet ψ has a joint localization in time and
frequency that the wavelet coefficients can be given the signification of frequency
content of the data at a given time or of joint time-frequency content of the
information in X.

The mother-wavelet is characterized by an integer N , called its number of
vanishing (or zero) moments, defined as:

∀m ∈ {0, . . . , N − 1},

∫

R

tm ψ(t)dt = 0,

∫

R

tN ψ(t)dt ̸= 0. (25)

The admissibility condition above (cf. (24)) imposes N ≥ 1. This means that,
for a mother-wavelet with N vanishing moments, the wavelet coefficients of a
polynomial of degree P < N are strictly zero. More generally, it means that the
wavelet coefficients TX(a, t) of a process X at time t are only sensitive to the
part of the local behavior of X which is more irregular than that of a polynomial
of degree N . In other words, the higher N , the less the wavelet coefficients are
sensitive to regular parts of the time series. The number of vanishing moments
of the mother wavelets also controls the behavior of its Fourier transform at the
origin:

|Ψ(ν)| ∼ |ν|N , |ν| → 0. (26)

Figure 3 shows examples of wavelets with different vanishing moments.

• Discrete wavelet transform
One also defines the coefficients of the discrete wavelet transform (DWT) as

a discrete subset of the Tx(a, t):

dX(j, k) = TX(a = 2j , t = 2jk) = ⟨X,ψj,k⟩, (j, k) ∈ (Z+, Z), (27)

where ψj,k(u) = 2−jψ(2−ju − k). This discrete subset of points is usually called
the dyadic grid of the discrete wavelet transform and this definition also usually
implies that the mother wavelet is constructed through a multiresolution analysis
[17,30]. The major interest in the use of the discrete wavelet transform lies in
the facts that the {ψj,k, (j, k) ∈ (Z+, Z)} form (possibly orthonormal) basis of
L2(R) (so that the DWT is a non redundant representation of X) and that
the dX(j, k) can be computed with fast pyramidal recursive algorithm whose
computational costs is of the order of that of a fast Fourier transform. In all the
methods and algorithms proposed here, the DWT is always used. For further
details on wavelet transforms, the reader is referred to [17,30].
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Fig. 3. Vanishing moments. Examples of mother wavelet with respectively, 1 (Haar,
or poor man’s, wavelet), 3 (B-spline wavelet) and 6 (Daubechies6) vanishing moments.

• Multiresolution analysis and scaling
Self-similar processes are usually studied through the analysis of their in-

crements, and mainly (8) and so is local regularity (cf. (19)). Long memory in
turn is analyzed through the aggregation procedure (cf. relation (16)). In spirit
both techniques already are multiresolution analysis since they consist in ana-
lyzing the evolution of a resolution or scale dependent quantity (increments or
aggregation) with that of the scale.

The wavelet based analysis of scaling proposes to replace increments or ag-
gregation with wavelet coefficients and intuition behind this substitution can be
formulated as follows. First, consider the wavelet coefficients of a process X ob-
tained with a particular choice for the wavelet-like function ψ(t) = δ(t+τ0)−δ(t)



46 P. Abry

and note that they are identical to its increments:

X(t + τ) − X(t) ≡ TX(a, t), with τ = aτ0.

Increments can therefore be thought of as a specific example of wavelet coef-
ficients obtained from a particular mother wavelet, which has a poor spectral
localization and only one vanishing moment (i.e., N = 1). Moreover, let us note
that selecting a mother-wavelet with N vanishing moment amounts to compute
increments of order N (i.e., increments of increments of . . . ).

Consider now the wavelet coefficients of a long range dependent process Y ,
obtained with a particular choice for the mother wavelet ψ(t) = 1 for −T0/2 <
t < T0/2 and 0 elsewhere2 and note that they are identical to the aggregated
process:

Y T (t) ≡ TY (a, t), with τ = aT0.

Aggregation can therefore be thought of as a specific case of wavelet decompo-
sition which has a poor spectral localization and zero vanishing moment (i.e.,
N = 0).

While the increments and the aggregation procedure compute differences
and averages respectively, a wavelet, being a band-pass function, naturally per-
forms a difference of averages and therefore gathers the two techniques in a
single one. And not only, the wavelet transform unifies these two techniques in
a single framework but it also brings generalization, versatility and robustness
through the choice of the mother-wavelet. One can, indeed, naturally think of
using mother-wavelets with better joint time and frequency localizations and
higher numbers of vanishing moment, resulting in better statistical properties,
this will be further discussed in Sect. 2.4.
Summary. All what the reader unfamiliar with wavelets needs to have in mind
to follow the remainder of this text is that the relevance of the wavelet transform
for the analysis of self-similar processes relies on two ingredients:

I1) the wavelet basis is designed from a dilation operator, ψa,0(u) = 1
|a|ψ(u

a );
I2) the mother wavelet is characterized by a strictly positive integer N , its

number of vanishing moments, cf. (25).

2.3 Self-similarity and Wavelets: Theory

Let X be a H-sssi process. Its DWT coefficients dX(j, k) and its CWT coef-
ficients TX(a, t) have the following statistical properties (for proofs, see, e.g.,
[8,32,11,46,31]).
P1 Self-Similarity: The dX(j, k) (and the TX(a, t)) reproduce, in an exact
manner, the self-similarity of the process:

{2−jHdX(j, k), k ∈ Z} d= {dX(0, k), k ∈ Z}. (28)
2 Strictly speaking, this box or indicator function is not a wavelet, since this is not a

band pass function.
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∀c > 0, {cHTX(a/c, t/c), t ∈ R, a ∈ R+} fdd=
{TX(a, t), t ∈ R, a ∈ R+}.

(29)

These two relations result, fundamentally, from the fact that wavelets are de-
signed using a dilation operator (ingredient I1 above). It is, moreover, interesting
to note that this last relation has strong and obvious analogies to that satisfied
by increments (cf. (8)).
P2 Non Stationarity: Though self similar processes are non stationary, their
{dX(j, k), k ∈ Z} form stationary sequences at each octave j. Identically, their
{TX(a, t), t ∈ R} form stationary processes at each scale a. This is again anal-
ogous to the stationarity of the increments and this is deeply connected to the
fact that N ≥ 1 (cf. ingredient I2 above).
P3 Long Range Dependence: It can be shown that the covariance function
of any two wavelet coefficients on the dyadic grid can be asymptotically bounded
as, |2jk − 2j′

k′| → +∞,

|Cov dX(j, k), dX(j′, k′)| ≤ C|2jk − 2j′
k′|−2(N−H) . (30)

This shows the key role played by the number of vanishing moments N . In-
creasing N allows to increase the rate of decrease of the covariance function
and therefore to reduce as much as desired the range of correlation amongst the
wavelet coefficients. More precisely, it can be shown that, in the Gaussian case,
if N > H + 1/2, long range dependence that exists amongst increments of X
when H > 1/2 is turned into short range dependence. Note that obtaining this
last property requires the simultaneous use of both ingredient I1 and I2 above.
P3ID Idealization: The “decorrelation effect”, i.e., the reduction of the range
of dependence of the wavelet coefficients under the increase of N , is idealized as
follows:
any two wavelet coefficients of X, on the dyadic grid {dX(j, k), k ∈ Z, j ∈ Z+},
can be regarded as independent one from the other.
This idealization is used to provide approximated but analytical studies of the
performance of the estimators proposed below.
Summary: Together, properties P1 and P2 imply that, for all finite moments:

E|dX(j, k)|q ≡ Cq2qjH ,∀j, (31)

where Cq = E|dX(0, 0)|q. Those relations are reminiscent of the fundamental
equations (5) and (7) and yield the same constraints on the process X: power
laws are to hold for all finite moments (e.g., for all q > −1 in the Gaussian case
or for all α > q > −1 in the α-stable case) and for all scales 2j , moreover, all
the exponents of the power laws are controlled by the single parameter H.

2.4 Self-similarity and Wavelets: Application

• Intuition
Self similar processes with stationary increments and finite variance are tra-

ditionally studied through their increments, mainly through (7), with q = 2.
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However, the practical use of such an equation requires that the mathematical
expectation be estimated, usually from a single observation of finite length. The
existence of long term correlations amongst increments, however, substantially
increase difficulties in the practical issue of estimation. For instance, the use of
the standard sample variance estimator (that replaces statistical averages with
time averages) presents remarkably poor statistical estimation performances [10].

The wavelet rewriting of (7), see (31) above with q = 2 can be used as a new
starting point:

E|dX(j, k)|2 = C22jH . (32)

From P1, wavelet coefficients exactly reproduce self-similarity. From properties
P2 and P3, they form, at each scale 2j , stationary sequences with short range
and weak statistical dependence. On condition that N is high enough, they do
not suffer any more from long range dependence. They are therefore statistically
better behaved than increments and offer a versatile and convenient tool for the
analysis of self-similarity. For instance, the standard sample variance estimator of
the wavelet coefficients is a very satisfactory estimator for the ensemble average.

• Log-scale Diagram
To study scaling and more specifically self-similarity with wavelets, we define

the following quantities:

Yj = log2

(
1

nj

∑nj

k=1 |dX(j, k)|2
)

,

σ2
j = Var Yj ,

(33)

where the njs denote the numbers of wavelet coefficients available at octaves
js. Then, we form the plots of the Yj = log2

(

1/nj
∑nj

k=1 |dX(j, k)|2
)

, together
with their error bars (σ2

j ), versus log2 2j = j. In those plots, that we proposed
to call Logscale Diagrams, straight lines evidence the existence of self-similarity
and the measurement of their slopes allows for an estimation of the parameter
H. Figure 4 proposes examples of logscale diagrams for the sample paths of
fractional Brownian motion and of a Long Range Dependent process.

• Estimation Issues
Precisely, the estimator Ĥ for H is defined through a weighted linear fit:

Ĥ =
∑

j

wjYj/2, (34)

where
∑

j runs over the range {j1, . . . , j2} of octaves where the linear fit is to be
performed, this range is to be chosen a priori. The wj satisfy the usual relations,

∑

j jwj = 1
∑

j wj = 0
wj = (1/λj)(S0j − S1)/(S0S2 − S2

1)
Sm =

∑j2
j=j1

λ−1
j jm(m = 0, 1, 2),

⎫

⎪
⎪
⎬

⎪
⎪
⎭

(35)

the λjs being arbitrary numbers.
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Fig. 4. Examples of Logscale Diagrams. Top left, sample path of a fractional Brow-
nian motion; top right, sample path of a Long Range Dependent process (a fARIMA
process). The fractional Brownian motion is an exact self-similar process, this can be
seen on its Logscale diagram through the fact that the linear behavior of the log of
the variance of the wavelet coefficients against the log of the scale holds for all scales
(bottom left). The measurement of the slope enables moreover to precisely estimate
the self-similarity parameter. The logscale diagram of the LRD process (bottom right)
shows scaling behavior that holds only in the limit of large scales.

The statistical performance of this estimator have been studied in detail in
[47,4]. For Gaussian processes, analytical calculations relying on the idealization
of exact independence of the wavelet coefficients P3ID, show that a residual bias
can be determined and therefore subtracted to produce an unbiased estimator.
Let n denote the number of samples of the analyzed process X, neglecting the
practical border effects resulting from the computation of the wavelet coefficients,
the njs behave as nj = 2−jn. For Gaussian processes and under P3ID, we
showed that [47]:

σ2
j ≡ Var Yj ≃ = 2(log2 e)2/nj

Var Ĥ ≃ 2(log2 e)2
∑

j w2
j 2j/n.

}

(36)

The variance of the estimator asymptotically decreases as the inverse of the
analyzed number of samples. Numerical simulations showed [47] that the actual
statistical performance are very close to the idealized ones, even for non Gaussian
processes. This approximate, however realistic, estimation of the variance of Ĥ
enables us to have confidence intervals on the estimation of the parameter H.
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The choice of the weights wj remains to be specified through the choice
of the λjs. It is well-known that the variance of the linear fit is minimal on
condition that the λjs match the covariance structure of the Yjs. Assuming
the idealization P3ID, one obtains that the Yjs are independent. The choice
λj = cste n−1

j , therefore, ensures that the quantities (
∑

j w2
j /nj) and Var Ĥ

takes close to minimal values. The estimator Ĥ is systematically implemented
with that particular choice.

• Additional properties
Thanks to its number of vanishing moments, the wavelet-based analysis of

self-similarity, moreover, benefits from robustness against non-stationarities. For
instance, if deterministic smooth trends (like a linear trend or an oscillating
trend) are superimposed to self-similar processes, this may significantly compli-
cate the detection and analysis of self-similarity. Because wavelet coefficients are
blind to polynomials (of degree smaller than N) and only feels the most irregular
parts of a process, increasing N will cancel out the possibly superimposed trends
and therefore enable a relevant analysis of scaling in data without requiring any
a priori processing. The possibility of performing various discrete wavelet trans-
forms with different N and of comparing the resulting analysis and estimations is
hence a key feature of the wavelet-based analysis of scaling against non station-
arities. Comparison of wavelet-based analysis performed using mother-wavelet
with different number of vanishing moments will allow to detect those trends
and perform relevant analysis of self-similarity (see [2,47,4] for details).

From another perspective, non-stationarities and scaling may have practical
effects and consequences that are practically very close and similar so that it may
be difficult to distinguish one phenomena from the other. We have also shown
that the wavelet framework offers a convenient way to design a statistical test
allowing to discriminate actual scaling from some non stationary effects [49].

Finally, other interesting features of this wavelet based analysis lies in the
facts that it is simple both conceptually and practically (DWT plus linear fits)
and that it has a low computational cost thanks to the recursive pyramidal
algorithm underlying the DWT. This is of importance when dealing with large
sample of data, as is often the case when dealing with scaling and allowed us to
propose real time on line algorithm for the analysis of scaling [39].

3 Beyond Self-similarity

3.1 Practical Limitations

Self-similar processes with stationary increments and finite variance, and more
specifically their Gaussian version, the fractional Brownian motion, are very
attractive models to describe scaling in empirical data and they are used and
quoted in numerous and various applications. This is mainly because they are
mathematically well-defined and well-documented and they moreover fulfill the
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intuition of scaling phenomena in a very satisfactory manner. Their major prac-
tical quality is their simplicity: each and every of their (scaling) properties, (self-
similarity, long-range dependence, fractal sample paths) is controlled by the sin-
gle H. This parameter is therefore used in applications to describe, sometimes
confusingly, either global or local scaling properties, i.e., either long memory
or fractality. . . The major practical drawback of H-sssi processes lies in . . . their
simplicity: it is very unlikely that the numerous and various types of scaling
encountered in the many different applications where they occur can all be de-
scribed by a unique model depending on a single parameter. More precisely,
exact self-similarity implies a number of specific properties (as summarized in
(5) or (31)) and significant departures from those properties can be observed in
the analysis of actual empirical data: i) moments of different orders may have
scaling exponents that are not controlled by a single parameter, or more simply
some moments may not present scaling or, even more simply, may not exist at all;
ii) when scaling are observed, they may not exist over the whole range of scales
as in the self-similar case, but only in a given range of scales, or only asymptot-
ically in the limit of large scales or in the limit of small scales; iii) power-law
behavior of the moments may not exist despite scaling behavior. In this section,
we will explore those variations and describe some related mathematical models.

Scaling phenomena may also occur or exist in point processes and might be
fruitfully studied through wavelets as well. This has been discussed in [1] and
will not be addressed here.

3.2 Beyond Finite Variance

In previous sections, we assumed that the variance of the process X, as well as all
higher moments, existed. However, one may encounter situations where scaling
and self similarity are valid but where the variance of the process, for instance,
and therefore all higher moments, are infinite. For those situations, the model of
Gaussian self-similar processes as well as the analysis presented above and based
on the variance of the wavelet coefficients are no longer relevant. Such situations
can be modeled using α-stable self-similar processes, see Sect. 2.1. A wavelet-
based analysis of α-stable self-similar processes can be conducted but the log of
the variance of the wavelet coefficients, log2 E|dX(j, k)|2, has to be replaced by
the quantity E log2 |dX(j, k)|, a random quantity with finite variance. This has
been discussed at length in [3,5].

3.3 Beyond Scaling over All Scales: Long Range Dependence,
1/f-Processes and Local Regularity

As said, a major consequence of self-similarity lies in the fact that the scaling
behavior holds for all the scales (see (31) or (32)). Practically however, scaling
may exist for the second order statistics (namely the variance) of the process,
but may be observed only in a given, large but finite, range of scales, or in the
asymptotic limits of small or large scales, rather than in the whole range of
scales.
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For instance, one may empirically observe the following asymptotic behavior:

E|dX(j, k)|2 ≃ C2j(γ−1), 2jm ≤ j ≤ 2jM , 2jM /2jm ≫ 1.

This is to be read as a weakened version of (32) and this is the signature of a
scaling behavior in a wide, but finite, range of scales therefore corresponding to
1/f -processes, with power law exponent γ (cf. (17)).

One may also empirically observe the following asymptotic behavior (see, for
example, Fig. 4(right)):

E|dX(j, k)|2 ≃ C2j2H , 2j → +∞.

This is to be seen as a weakened version of (32) and this is the signature of
scaling that exist only for the largest scales of the process. This is reminiscent of
(16) and tells us that the data are not self-similar but rather present some long
term correlations properties and can therefore be modeled as a stationary long
range dependent process [47,4].

Another possibility is to empirically observe an asymptotic scaling behavior
in the limit of fine scales:

E|dX(j, k)|2 ≃ C2j2H , 2j → 0.

This is again to be seen has a weakened version of (32) and is reminiscent of
Hölder regularity behavior (cf. (19)). This means that the data are not self
similar but rather that their sample paths are characterized by a local regularity
h controlled by H and that remains constant along time. This therefore betrays
a fine scale scaling property.

For those situations, 1/f -processes, long range dependence or local regularity,
the analysis and estimation of the exponent can be performed with the logscale
diagram, as in the self-similar case, except that linear fits are to be performed
over a finite chosen range of scales, respectively. The question of automatically
choosing or detecting the relevant range of scales is subtle and has been addressed
e.g., in [50] for the LRD case.

3.4 Beyond Second-Order Statistics –
Multiplicative and Multifractal Processes

• MultiScaling
Another practical major limitation of self-similar processes lies in the fact

that the exponents of the power-laws for all the moments are controlled by the
single parameter H, see (31). It is, however, quite common on empirical data to
observe, in a given, finite, range of scales, a behavior of the type:

E|dX(j, k)|q ≃ C2jH(q), 2jm < 2j < 2jM , (37)

where the exponents H(q) may significantly depart from the linear qH behavior.
We proposed to refer to this observation as multiscaling.
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• Multiplicative processes
Modeling multiscaling implies a major change of paradigm: the additive

structure underlying a random walk (cf. (1)) has to be abandoned and replaced
by a multiplicative scheme. In other words, being at position X at time t results
from a collection of elementary steps that are no longer added up together but
instead multiplied one to the other. The canonical reference for multiplicative
processes are the celebrated Mandelbrot’s c-adic cascade processes [28]. Their
construction is based on the iteration of a sequence of operations. At iteration
j, one has cj segments, to which are associated numbers Xj,k, k = 0, . . . , cj − 1.
At stage j + 1, one divides segment (j, k) into c subsegments to which are as-
sociated new numbers Xj+1,l = Wj+1,lXj,k where l = (k − 1) ∗ c + p, with
p = 0, . . . , c − 1. The multipliers Wj,k are i.i.d. positive random variables. Usu-
ally, µ(t) denote the measure obtained in the limit of an infinite number of it-
erations and X(t) =

∫ t
0 µ(du) the corresponding process. There exists numerous

variations around this scheme that all share the spirit of multiplicative cascade.

• Multifractal processes
An important consequence of the Mandelbrot’s multiplicative cascade proce-

dure lies in the fact that the resulting motions X(t) =
∫ t
0 µ(du) are multifractal

processes. In other words, they present sample paths with Hölder exponents h(t)
that vary very widely, irregularly and erratically from point to point and with
each realizations. Those fluctuations of the local regularity are often described
through the so-called multifractal spectrum D(h), (which consists of the Haus-
dorff dimension of the set of points where the local regularity take the value
h).

An important practical consequence of multifractality is that quantities called
partition functions,

(1/nj)
nj
∑

k=1

|dX(j, k)|q

present in the limit of small scales power law behaviors,

(1/nj)
nj
∑

k=1

|dX(j, k)|q ∼ Cq2jH(q), 2j → 0.

Reading the partition functions (1/n)
∑n

k=1 |dX(j, k)|q as estimators of the mo-
ments E|dX(j, k)|q, the scaling relation above is very close to the equation defin-
ing multiscaling in the limit of small scales. Therefore multifractal can be seen
as the very example for multiscaling.

Moreover, for the c-adic cascades, the multifractal spectrum D(h) can be
obtained from the function H(q) through a Legendre transform. In that case,
H(q), and therefore D(h), are controlled by the probability density function of
the multipliers W . Further details on multifractal are beyond the scope of this
chapter and the interested reader is referred to e.g., [36,37].
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• Estimation issues
To test multiscaling or multifractal in empirical time series and estimate the

corresponding H(q) exponents, one forms the quantities Y (q)
j that can be read

both as generalization of the Yj (cf. (33)) to statistics of order different than 2
and as sample time average estimators for the ensemble averages:

Y (q)
j = (1/nj)

nj
∑

k=1

|dX(j, k)|q. (38)

An extension of the estimation procedure described in Sect. 2 has been pro-
posed to estimate the H(q) exponents: it mainly consists in measuring slopes in
log2 2j = j vs log2 Y (q)

j through non weighted linear regressions. For details,
see [4,48]. The estimation of the H(q) exponents for a multifractal process, syn-
thesized according to the definitions proposed in [16], is illustrated in Fig. 5.
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Fig. 5. Multiscaling Analysis of a Multifractal Process. Top left, sample path of a mul-
tifractal process synthetized according to the technique proposed in [16]; right column,
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j vs j) of orders 2 and 3; bottom left, estimated exponents
H(q).

A key practical issue is to define a statistical test that would allow to test
whether H(q) is a linear function of q or not. It would enable to decide whether
the analyzed data are to be modeled with an additive or multiplicative scheme.
Up to our knowledge, this has hardly ever been addressed theoretically.

https://www.researchgate.net/publication/3859077_Infinitely_divisible_cascade_analysis_of_network_traffic_data?el=1_x_8&enrichId=rgreq-28f0c97bf0f560ca45deee13c73b6efc-XXX&enrichSource=Y292ZXJQYWdlOzIyNTM1MDY0MjtBUzoyMzI5MzAyMTU3MjMwMTVAMTQzMjU0NjMwMDAxNw==
https://www.researchgate.net/publication/2349455_Wavelets_for_the_Analysis_Estimation_and_Synthesis_of_Scaling_Data?el=1_x_8&enrichId=rgreq-28f0c97bf0f560ca45deee13c73b6efc-XXX&enrichSource=Y292ZXJQYWdlOzIyNTM1MDY0MjtBUzoyMzI5MzAyMTU3MjMwMTVAMTQzMjU0NjMwMDAxNw==


Scaling and Wavelets: An Introductory Walk 55

3.5 Beyond Power Laws – Infinitely Divisible Cascade

• Intuition
Multiscaling offers an extension to self-similarity insofar as a collection of

exponents rather than a single one is needed to describe data. Yet, it maintains
a major feature of self-similarity: moments behaves as power laws of the scales.
However, when analyzing actual data, it may very well be observed that this is
not the case, see e.g., [12,20,48,52]. To account for those situations, the infinitely
divisible cascade model, on which we concentrate now, proposes to gain an extra
degree of freedom by giving up the requirement that moments behaves a priori
as power laws of the scales. The equations below summarize the connections
between self-similarity, multiscaling and infinitely divisible cascade:

Self-Sim. E|dX(j, k)|q = Cq(2j)qH = Cq exp(qH ln(2j))
MultiScaling E|dX(j, k)|q = Cq(2j)H(q) = Cq exp(H(q) ln(2j))
Inf. Div. Casc. E|dX(j, k)|q = − − −− = Cq exp(H(q)n(2j)),

(39)

where the functions n(2j) and H(q) need not a priori be the function ln 2j and
the linear function qH, respectively.

• Definition
The concept of infinitely divisible cascade was first introduced by B. Castaing

in [12,13] and rephrased in the wavelet framework in [7,48]. We briefly recall
its intuition, definition and relations to other models. Starting again from the
self-similar case, one can write the probability density function (pdf) of the
wavelet coefficients at scale a = 2j , as a dilated version of the pdf of the wavelet
coefficients at a larger scale a′: pa(d) = (1/α0) pa′(d/α0) where the dilation factor
is unique: α0 = (a/a′)H . In the cascade model, the key change is that there is
no longer a unique factor but a collection of dilation factors α; consequently pa

will result from a weighted sum of dilated incarnations of pa′ :

pa(d) =
∫

Ga,a′(lnα)
1
α

pa′

(
d

α

)

d lnα.

The weighting function Ga,a′ is called the kernel or the propagator of the cas-
cade. Obviously, if Ga,a′ is a Dirac function, Ga,a′(lnα) = δ(lnα − H ln(a/a′)),
infinitely divisible cascade reduces to self-similarity, therefore understood as a
special case. The definition of the cascade above shows that the pdf’s of p

a
and

p
a′ of the log wavelet coefficients ln |d| are related by a convolution with the

propagator:

p
a
(lnα) =

∫

Ga,a′(lnα) p
a′(ln |d| − lnα) d lnα

= (Ga,a′ ∗ p
a′)(lnα). (40)

If cascades exist between scales a and a′′ and between scales a′′ and a′, then a
cascade between scales a and a′ exists, and the corresponding propagator results
from the convolutions of the two propagators: Ga,a′ = Ga,a′′ ∗ Ga′′,a′ . Infinite
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divisibility (also called continuous self similarity) means that no scale between a
and a′ plays any characteristic role (i.e., a′′ in the above statement can be any
scale between a and a′). Infinite divisibility therefore implies that the propagator
consists of an elementary function G0 convolved with itself a number of times,
where that number depends on a and a′:

Ga,a′(lnα) = [G0(lnα)]∗(n(a)−n(a′)) .

Using the Laplace transform G̃a,a′(q) of Ga,a′ , this can be rewritten as G̃a,a′(q) =
exp {H(q)(n(a) − n(a′))}, with H(q) = ln G̃0(q) and a := 2j ; this implies that
E|dX(j, k)|q = Cq exp

{

H(q)n(2j)
}

, thus validating (39). The main consequences
of infinitely divisible cascade read therefore:

ln E|dX(j, k)|q = H(q)n(2j) + Kq (41)

ln E|dX(j, k)|q =
H(q)
H(p)

ln E|dX(j, k)|p + κq,p. (42)

This last equation implies that for any p and q, the moment of order q behave as
power-law of the moment of order p. This is sometimes referred to as ”extended
self-similarity”, in turbulence mainly. Note moreover, that, in the relation (41)
above, there is some arbitrariness, indeed:

H(q)n(a) + Kq =
(

H(q)
β

)

(βn(a) + γ) + (Kq − H(q)γ
β )

= H ′(q)n′(a) + K ′
q

(43)

where β ̸= 0 and γ are arbitrary constants. It clearly indicates that the func-
tion H(q) is defined up to a multiplicative constant while n is defined up to
multiplicative and additive constants.

If it is moreover required that the function n(a) ≡ ln a, the infinitely divisible
cascade is called scale invariant and this implies that:

G̃a,a′(q) = (a/a′)ln G̃0(q) and E|dX(j, k)|q = (2j)ln G̃0(q),

proving that scale invariant infinitely divisible cascade reduces to multiscaling
with exponents being controlled by the propagator: H(q) = ln G̃0(q) . In this
framework, multiscaling, or multifractal, is therefore understood as a special case
of infinitely divisible cascade. In a scale invariant infinitely divisible cascade, one
can also inquire on whether H(q) is a linear function of q or not, in which case the
cascade reduces to the even more special case of self-similarity. It is, therefore,
natural to consider the function H(q)/q and to test its constancy.

• A fundamental feature
The Infinitely Divisible Cascade model is hence a natural extension to the

multiscaling and self-similarity ones, it is important to note however that it
maintains a fundamental feature that already existed in the two previous models
(cf. the set of equations (39): the dependence of the moments in the variables q
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Fig. 6. Infinitely Divisible Scaling Analysis for Turbulent Velocity Signals. Top left,
Velocity Time Series; Second Raw, the Structure Functions of orders 2 and 3 show clear
departures from strict power laws; top right, Extended Self-Similarity (Y (3)

j vs Y (2)
j ),

the straight line show that an Infinitely Divisible Cascade Model gives a satisfactory
description of the Velocity Time Series; bottom left and right respectively, estimated
functions H(q) and n(2j).

(order of the moment) and 2j (scale) is separable. This key feature can actually
be considered as a practical or operational definition of scaling in time series.

• Estimation issues
To analyze Infinite Divisibility in empirical time series, we propose to form

the diagrams Y (q)
j versus Y (p)

j , that constitute natural extensions to logscale
diagrams. Again, those diagrams come with confidence intervals for the Y (q)

j s.
Testing the validity of the model empirical data amounts to test for the exis-
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tence of an affine relation amongst the Y (q)
j versus Y (p)

j , i.e., straight lines in
the diagrams. The estimation of the corresponding H(q) and n(a) parameter
functions is performed through a non weighted linear fit between the random
variables Y (q)

j versus Y (p)
j (see (41) and (42)):

Ĥ(q)/H(p) = slopeq,p, ∀q

K̂q = interceptq,p, ∀q

n̂(a = 2j) = 1
H(p)

〈
1

slopeq,p

(

Y (q)
j − K̂q

)〉

q
+ Kp,

(44)

where ⟨.⟩q stands for simple means on q-values. Details on the difficulties (best
choice of p, arbitrariness from (43), . . . ) of the procedure as well as on its statis-
tical performances are given in [4,15]. Fig. 6 illustrates this estimation procedure
on turbulence velocity data3 recorded in jet turbulence at a Rλ Reynolds number
of the order of 600.

4 Conclusion

In this article, we showed that scaling phenomena in empirical data may be de-
scribed through a large variety of mathematical models. We gave an introductory
and comprehensive overview of those models, that can be read as variations on
the self-similarity reference. We pointed out however that multiscaling, multifrac-
tal and cascades imply the replacement of the additive random walk framework
with multiplicative constructions.

Then, we have shown how and why the wavelet transform offers a versatile,
powerful and efficient tool to perform the analysis of scaling: with only little
a priori on the nature and properties of the empirical data, it allows to detect
the existence of scaling in data, to identify the nature of the detected scaling,
to estimate the corresponding parameter. Wavelets may also be used for the
numerical synthesis of stochastic processes with a priori prescribed (scaling)
properties. This has not been detailed here and the interested reader is referred
to [4].

This article is expected to propose to the reader a quick start on what scaling
in time series may mean and on what to do with wavelets to analyze them. A set
of Matlab routines enables a practical use of all the techniques presented here.
Those techniques have been fruitfully used for the analysis of hydrodynamic
turbulence [14,15] and computer network traffic [4,48].
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7. A. Arnéodo, J.F. Muzy, S.G. Roux: J. Phys. II France, 7, 363 (1997)
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