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Foraging albatrosses
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Humphries	et	al.	(PNAS,	2012)
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Foraging albatrosses
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Humphries	et	al.	(PNAS,	2012)



Conclusion
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Conclusion 1

The best strategy for foraging consists of mixing 
Brownian motion (random walk) and Lévy flights (long 
stretches) 

The probability distribution 
has long tails = highly non Gaussian 

Strong analogy with charge motion in magnetised 
plasmas
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p(distance travelled)

Such	data	cannot	be	analysed	with	the	classical	
tools	we	learn	in	our	physics	courses!
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Conclusion 2

non-stationary 
most analysis techniques assume stationarity  

non-Gaussian 
most analysis techniques assume Gaussianity 

non-linear 
most analysis techniques assume linearity 

etc.
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Plasmas tend to be highly 

focus	of	this	lecture



Plasmas through the 
multiscale (wavelet) 
lens

M.	C.	Escher
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Outline

A wavelet primes 
Some examples from plasmas 
Coherent structures  
Sparsity 
Blind source separation
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An exercise
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What	do	you	see	?
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How a CCD camera sees this
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How our eye sees this
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4
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A more symbolic representation

13
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=		red	square	+	lace	+	Deep	thought	
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A multiscale view

Our eye extracts multiple scales and only keep the most 
relevant information. 

What is the optimal representation of plasma data ? 
optimal = to get deeper insight (find invariants) ? 

optimal = find highest compression (jpeg) ? 
optimal = find the simplest code that can generate these data 
(Kolmogorov complexity) ? 
…

15



A wavelet primer
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Optimal tiling
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Optimal tiling
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Wavelets	(1984)
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•Fixed	Sme	localisaSon	
•Fixed	spectral	localisaSon

•Variable	Sme	localisaSon	
•Fixed	relaSve	spectral	localisat.

�t ·�! � const.
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Optimal tiling

20

Sme

fr
eq

ue
nc
y

Gabor	atoms	(1946) Wavelets	(1984)

�t

�!

Sme

fr
eq

ue
nc
y

�!

�t

�t ·�! � const.

far 
preferable



T.	Dudok	de	Wit	–	Les	Houches	–	5/2017 /	2825

Wavelets are born

Morlet and Grossman (1984) : project f(t) on a set of 
wavelet functions 
 
 
 
with 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mother 
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Some common wavelets
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Morlet wavelet Mexican hat wavelet Haar wavelet

Daubechies N=4 Daubechies N=10 Daubechies N=20

Coiflet N=5 Meyer Symmlet N=5
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What is a wavelet ?

Almost anything can be a wavelet  
 
 
1) admissibility condition 
 
 
 
2) integrability 
 

24

Z +1

�1
 (t) dt = 0

a mother wavelet 
must be wiggling

Z +1

�1
| (t)| dt < 1

Z +1

�1
| (t)|2 dt < 1

a mother wavelet 
must not diverge
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Moments 

Wavelets are classified by their order N  
= number of vanishing moments

25

Z +1

�1
tN  (t) dt = 0

Wavelets	will	be	insensiDve	to	polynomial	trends	
of	order	N		(➞	non-staDonarity)
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Wavelets are born
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From continuous to discrete wavelets
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Idea	:	choose	opSmal	grid	to	avoid	redundant	
informaSon	=	find	orthogonal	“cells”	
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Similarities
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Discrete wavelets
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Continuous vs discrete
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In 2D

This formalism can be readily extended to 2D, and beyond
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2D decomposition: example
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2D algorithmics

There exist efficient computational schemes  
(filter banks)
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Pros and cons

Continuous wavelet 
transform 

Good for analysis: 
interpreting time/scale 
content 
Coefficients are highly 
redundant  
Computationally expensive 
Not good for synthesis 

Discrete wavelet 
transform 

Interpretation of coefficients 
is difficult (no translational 
invariance) 
Orthogonal basis 
Computationally efficient 
(faster than FFT) 
Good for filtering and 
compression

34
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What wavelet should I choose ?

35

Curvelets (Candès et al., 2006) are ideally suited for dealing with such structures,

since they have been designed to capture curved shapes. An example is shown in

Figure 9, in which the differenced image D0 from Figure 7 has been processed us-
ing the discrete curvelet transform. The wavelet coefficients have been computed

and only those values exceeding a threshold determined by a preset noise level were
retained. The inverse transform should then give an image in which only salient

curved features are retained. We find indeed that most of the shot noise has been

eliminated that way while arched-like structures in the vicinity of active regions and
the solar limb now appear much more evidently. Several successful applications

of multiresolution techniques to the detection of solar features have been reported

(Portier-Fozzani et al., 2001; Young and Gallagher, 2008; Ireland et al., 2008). Gal-
lagher et al. (2010) recently used curvelets to detect coronal mass ejections.

Figure 9: The differenced image D0 from Figure 7 before (a) and after (b) noise re-
duction using the curvelet transform. The same vertical scale has been used for both

images.

It should be stressed that the Haar wavelet, whose popularity stems from its sim-

ple shape and its convenient properties, also is one of the worst possible wavelets for

analysing solar images. Indeed, the shape of the wavelets should ideally be tailored
to the kind of structures one wants to investigate. More exactly, the regularity (or

equivalently the number of vanishing moments) in a mother wavelet is directly re-
lated to slope of the Fourier power spectral density one can probe. Smooth images

have steep spectra, and therefore they are best analysed with high order wavelets

(Mallat, 2008; Abry et al., 2009). Haar wavelets are not recommended, unless one is
interested in studying discontinuities.

3.1.2 Denoising

The problem of denoising images is very similar to that of feature extraction, since

both aim at separating desired features from unwanted ones. Multiscale analysis
is widely used for that purpose (Krim et al., 1999; Mallat, 2008; To et al., 2009) but

applications to solar images are scarce. Stenborg and Cobelli (2003), for example,

use a wavelet packet approach to extract features and reduce noise.
Most multiresolution methods are optimal or suboptimal for data that are af-

fected by Gaussian noise. Solar images, however, are often based on photon count-

ing; as a result, the noise characteristics is often a mix of Poisson and Gaussian statis-

13

ages {D0,D1, . . . ,DN } using a Gaussian smoothing kernel. Next, each differenced im-

age is normalised with respect to its mean absolute intensity, or root mean squared

intensity. By doing so, we put all scales on equal footing. The reconstructed image,
which is displayed in Figure 8b, already reveals a considerable contrast enhance-

ment. To further enhance the contrast, we normalise for each pixel the wavelet coef-
ficients with respect to their mean absolute intensity, or root mean square intensity.

In this last step, the enhancement is done locally only. In contrast to better-known

techniques such as histogram equalization, in which the size of the neighbourhood
has to be specified using criteria that are often subjective, here the size is adapted

automatically to the characteristic size of the locally dominant structure, which is

an important asset. This last step considerably enhances structures near the solar
limb (the edge of the disk), where their identification is most difficult, see Figure 8c.

In this example, shot noise dominates as soon as one moves away from the limb,
so that weak coronal features cannot be followed far into the corona. The image

quality can be further improved by adding a filtering stage. This can be done in

several ways, either by processing the wavelet coefficients, or by using the discrete
wavelet transform and thresholding the wavelet coefficients, see below.

Figure 8: Solar image taken in the VUV by the SWAP telescope. The original (a) and

the processed images are shown. In caption (b) only the contrast between scales

has been enhanced. In caption (c) contrast enhancement with respect to the local
neighbourhood has been included.

3.1 Other applications

The multiscale image enhancement can be improved and extended in multiple
ways. This is now gradually becoming an active field of investigation in solar physics.

3.1.1 Feature detection

The solar feature detection and extraction problem is discussed in detail in a com-
panion article by Pérez-Suárez et al. (2010). Here we consider this problem in the

light of multiscale analysis only. The à trous algorithm we discussed just before

has the advantage of being multi-purpose. When it comes, however, to detecting
and extracting structures that have a specific shape, much better performance can

be achieved by tailoring the shape of the analysing wavelets to that of the struc-
tures of interest. Typical examples are the magnetic loops that often permeate the

solar atmosphere and whose conspicuous curved shape requires curved wavelets.

12

original	solar	EUV	image	
(SWAP/PROBA2)

enhanced	with	isotropic	
wavelets	=	blurry

enhanced	with	curvelets	 
=	more	appropriate
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What wavelet should I choose ?

    

what kind of structure am I looking for ? 

how regular is it (Hölder regularity) ? 

symmetries ? what shape in 2D ? etc.

36

Morlet wavelet Mexican hat wavelet Haar wavelet

Daubechies N=4 Daubechies N=10 Daubechies N=20

Coiflet N=5 Meyer Symmlet N=5

Morlet wavelet Mexican hat wavelet Haar wavelet

Daubechies N=4 Daubechies N=10 Daubechies N=20

Coiflet N=5 Meyer Symmlet N=5

The	choice	of	the	mother	wavelet	SHOULD	be	
driven	by	physical	consideraDons



Coherent structures

M.	C.	Escher
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What is a coherent structure ?

39

between jbj2 and juj2, and both dissipate at the same rate (mag-
netic Prandtl number!1), so that the magnetic and velocity char-
acteristic scales are similar. The Reynolds number and magnetic
Reynolds number are about 300. The magnetic field extracted
from the DNS at this final time and the electric field obtained
through equation (1) constitute the accelerator (EB )DNS.

To construct (EB )STO we modify the phases of b̃(k) and ũ(k)
according to

!i(k) ! !i(k)þ "(k); #i(k) ! #i(k)þ ’(k); ð7Þ

where"(k) and’(k) are randomnumbers distributed uniformly in
the interval (%$, $) and which satisfy "(k) ¼ %"(%k) and
’(k) ¼ %’(% k). The electric field is then computed from equa-
tion (1). The above transformation ensures that (1) the phases of
the new fields (EB )STO contain a highly random part; (2) the
spectra of u and b remain unchanged; (3) the divergence of b re-
mains equal to zero; (4) the ideal MHD condition e =b ¼ 0 is
preserved if % ¼ 0, so that the randomization does not introduce
parallel electric fields.

2.3. Intrinsic Properties of the Accelerators
(EB )DNS and (EB )STO

The whole purpose of building an accelerator using DNS of
theMHD equations is to obtain an electromagnetic configuration
that has more characteristic features of turbulence than only the
correct energy spectra. In this section we describe some of the dif-
ferences between (EB )DNS and (EB )STO that are relevant from the
point of view of turbulence and particle acceleration. See Verma
(2004) for a recent review on MHD turbulence.
Figure 1 presents three-dimensional views of the magnetic

(jbj2) and electric (jej2) energy densities. Although this corre-
sponds only to a visual impression, it appears clear from the graphs
that the electromagnetic field composing (EB )DNS hosts more co-
herent, filamentary structures than the one composing (EB )STO. In
the latter, structures appear noisier and span regions of a smaller
extent.
Also, it appears from Figure 1 that the electric field has more

extreme values (dark red) than the magnetic field, as already no-
ticed by Dmitruk et al. (2003). More quantitative information on
this can be obtained from the distributions (one-point functions)

Fig. 1.—Magnetic (top) and electric (bottom) energy densities of the (EB )DNS (left) and (EB )STO (right) fields, similar as in Dmitruk et al. (2003). Blue and red
regions indicate, respectively, low and high values.

ARZNER ET AL.324 Vol. 637

Arzner	et	al.	(2006)
Karimabadi	et	al.	2013

C.	Hidalgo	et	al.	(2002)
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How do I identify a coherent structure ?

local accumulation of “energy” in real space 
PVI : partial velocity increments (Greco et al. 2008)

42
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How do I identify a coherent structure ?

local accumulation of “energy” in real space 
PVI : partial velocity increments (Greco et al. 2008) 

local accumulation of “energy” in wavelet space 
LIM : local intermittency measure (Farge, 1992) 

phase coherence 
the phases are somehow coupled to each other

44

PVI =
|�f(t)|2

h|�f(t)|2i �f(t) = f(t+ ⌧)� f(t)

LIM =
|f̃(t, a)|2

h|f̃(t, a)|2|it
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PVI versus LIM

The PVI is a special case of the LIM, for a wavelet that 
actually has poor properties…

45

f̃(t, a) = f(t) ⇤
�
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�

 (t)
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|�f(t)|2

h|�f(t0)|2it0
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Example
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Example

48
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Example

49

a
m

p
lit

u
d

e

0

0.5

1

phase   n=1024  ns=80

time [sampling periods]
0 100 200 300 400 500 600 700 800 900 1000

sc
a

le

101

102

p
h

a
se

 [
ra

d
]

-3

-2

-1

0

1

2

3

Phase



T.	Dudok	de	Wit	–	Les	Houches	–	5/2017 /	2825

Intermediate conclusion (1)

Energy-based measures (LIM, PVI, …) are mostly 
sensitive to sharp gradients (e.g. current sheets) 

Are they able to detect “real” coherent structures 
(solitons, wave packets, etc.) ? 

Phase information is difficult to exploit

50

We	need	a	different	approach



What is a coherent 
structure ?

M.	C.	Escher
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What is a coherent structure ?

Instead of defining what a coherent structure IS 

Define what it is NOT

52

Coherent	structure	∩	noise	=	∅

“Noise”	cannot	be	properly	projected	on	any	basis	funcSons,	 
(≈	its	energy	is	distributed	over	many	scales,	with	no	phase	coherence)
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Example : is there a coherent structure ?

53

g	h	j	d	s	e	2	2	z	c	l	b	g	r	o	n	k	h	f	
r	v	de	4	g	7	n	0	n	v	e	3	c		q	z	d	g	
b	m	l	p	0	7	c	s	g	y	6	g	!	t	d	4	f	h	
i	4	s	3	h	8	6	h	h	f	4	g	7	n	0	n	v	d	
5	d	d	s	w	t	u	k	i	b	y	f	4	g	7	n	0	n	
v	e	3	c	q	z	d	g	b	m	h	i	g	5	v		k	9	j	
v	5	c	5	h	u	g	t	y	l	p	j	n	q	v	f	c	



T.	Dudok	de	Wit	–	Les	Houches	–	5/2017 /	2825

0 0.2 0.4 0.6 0.8 1

f 
o
ri
g
in

a
l

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f 
n
o
is

y

-0.2

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

F
k o

ri
g
in

a
l

-4

-2

0

2

4

6

8

0 200 400 600 800 1000

F
k n

o
is

y

-4

-2

0

2

4

6

8

How wavelet denoising works
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original	signal signal	with	noise	added

wavelet	coefficients	(original) wavelet	coefficients	(noisy)

set	to	0	all	but	the	largest	
coefficients

Noise	is	spread	out	evenly,	whereas	the	coherent	
structures	are	concentrated	in	a	few	coefficients
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Denoising

These methods are well documented 
there exists a rigorous framework for determining optimal 
thresholds, etc. [Donoho, Mallat, …]

57
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Denoising

58

One	man’s	noise	is	another	man’s	signal



Example :  
noisy magnetic field 
measurements in the 
ionosphere

M.	C.	Escher
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Denoising

61

Interference	in	AC	magneSc	field	data	(CUSP2000	sounding	rocket)

4 12. Denoising

• the transform is invertible, so the original signal can readily be reconstructed from is
approximations and details.

Figure 12.3 suggests that large amplitude coefficients correspond to transient variations in the
signal, which we attribute to interference noise. The recipe is then the following: at each level,
define a threshold by inspecting the details, and set to zero all but the largest coefficients;
at the end, restore the signal from the corrected wavelet coefficients. The thresholds we
recommend for the present example are indicated in Figure 12.3 by dashed lines.

This method has been shown to remarkably efficient for denoising time series and images.
The choice of this threshold level can be automated using various entropic criteria or by
investigating the probability density of the wavelet coefficients [misiti00, mallat98]. The
result of the reconstruction is shown in Figure 12.4. Note in particular how well the signal is
preserved around the clipping intervals. Wiener filtering cannot handle such discontinuities
without smoothing the whole time series.

Note that depending on the properties of the noise and the signal, one can either reconstruct
the noise and obtain the signal of interest from the residuals (i.e. the difference between
the original and the processed data) or reconstruct the signal and leave out the noise. The
appropriate choice depends on the characteristics of the data: one should always try to
reconstruct that fraction of the data which is most structured, or whose wavelet coefficients
mostly deviate from a Gaussian distribution. In this particular example, the physical signal
is essentially featureless, in contrast to the interference noise. In most applications, the noise
is featureless and so the signal is reconstructed instead.

−500

0

500
(a)

−100

0

100

am
pl

itu
de

 [a
.u

.]

(b)

0 500 1000 1500
−500

0

500

time [samples]

(c)

Figure 12.4: Comparison between the original magnetic field data (a), the residuals that
contain the physical signal of interest (b) and the reconstructed noise (c). Fourth order
symlets were used, with six levels.

This procedure can be tuned and improved in numerous ways. A question immediately
arises: what wavelet should I use ? With white and additive noise, the performance of the
denoising depends on the ability of the wavelets to approximate the signal with just a few
coefficients. Most orthogonal wavelet families such as Daubechies, biorthogonal, symlets,
coiflets, etc. usually perform quite well. Haar wavelets are not recommended because they

original	data
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plasma	turbulence	(signal)
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• the transform is invertible, so the original signal can readily be reconstructed from is
approximations and details.

Figure 12.3 suggests that large amplitude coefficients correspond to transient variations in the
signal, which we attribute to interference noise. The recipe is then the following: at each level,
define a threshold by inspecting the details, and set to zero all but the largest coefficients;
at the end, restore the signal from the corrected wavelet coefficients. The thresholds we
recommend for the present example are indicated in Figure 12.3 by dashed lines.

This method has been shown to remarkably efficient for denoising time series and images.
The choice of this threshold level can be automated using various entropic criteria or by
investigating the probability density of the wavelet coefficients [misiti00, mallat98]. The
result of the reconstruction is shown in Figure 12.4. Note in particular how well the signal is
preserved around the clipping intervals. Wiener filtering cannot handle such discontinuities
without smoothing the whole time series.

Note that depending on the properties of the noise and the signal, one can either reconstruct
the noise and obtain the signal of interest from the residuals (i.e. the difference between
the original and the processed data) or reconstruct the signal and leave out the noise. The
appropriate choice depends on the characteristics of the data: one should always try to
reconstruct that fraction of the data which is most structured, or whose wavelet coefficients
mostly deviate from a Gaussian distribution. In this particular example, the physical signal
is essentially featureless, in contrast to the interference noise. In most applications, the noise
is featureless and so the signal is reconstructed instead.
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This procedure can be tuned and improved in numerous ways. A question immediately
arises: what wavelet should I use ? With white and additive noise, the performance of the
denoising depends on the ability of the wavelets to approximate the signal with just a few
coefficients. Most orthogonal wavelet families such as Daubechies, biorthogonal, symlets,
coiflets, etc. usually perform quite well. Haar wavelets are not recommended because they



Example :  
magnetic structures 
in the magnetosphere

M.	C.	Escher
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Example

Short-Large Amplitude Magnetic 
Structures (SLAMS) upstream of 
the Earth’s quasi parallel bow shock

63
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Example

The probability density function is 
close to Gaussian…

64
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Example

But the variations are not that random : dispersive 
wave packets
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Example

Using the discrete wavelet transform, decompose
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Example

The power spectral density shows that these structures 
are concentrated in the spectral domain 
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Example : 
intermittency in 
tokamak edge 
turbulence
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Example

Intermittent density bursts in a 
tokamak edge plasma (Tore 
Supra)

69

has been recorded in the middle of the plasma current pla-
teau. The large radius was R=2.33 m, the small radius a
=0.77 m, the mean plasma density n̄i=1.37!1019 m−3, the
plasma current Ip=0.84 MA and the edge safety factor q
=6.71. Moreover, 2.1 MW of lower hybrid waves were ap-
plied to the plasma.

The ion saturation current fluctuations were measured by
a fast reciprocating Langmuir probe. The total duration of the
probe motion into the plasma was 300 ms. When the probe
reached 2.8 cm away from the last closed flux surface
!LCFS", the signal was recorded at 1 MHz during 8 ms !Fig.
3", which gave N=213=8192 samples. A high-pass filter at
frequency 0.1 kHz and a low-pass filter at frequency
500 kHz have been applied to eliminate both low frequencies
and aliasing.

B. Extraction of coherent bursts

We use the wavelet extraction algorithm to split the sig-
nal S!t" !Fig. 4, top" into two orthogonal components, the
coherent bursts, SC!t" !Fig. 4, middle", and the incoherent
turbulent fluctuations, SI!t" !Fig. 4, bottom". The optimal
threshold value has been obtained after n=12 iterations of
the algorithm !Fig. 5".

As results, we observe that the coherent signal SC!t",
made of 5.8%N wavelet coefficients, retains 86.6% of the
total variance and the extrema are preserved !Table I". In
contrast, the incoherent contribution SI!t", is made of
94.2%N wavelet coefficients but contributes to only 13.4%
of the total variance !Table I", which corresponds to a signal
to noise ratio SNR=10 log10!"2 /"I

2"=8.72 dB.
The decomposition shows that the bursty and coherent

contribution to the signal dominates over the turbulent back-
ground fluctuation, and this more strongly than what has
been found with previous methods based on clipping.10

Figure 6 shows the PDFs in semi-logarithamic coordi-
nates for the total, coherent and incoherent contributions,
estimated using histograms with 50 bins and integrals nor-
malized to one. The PDFs of the total signal and the coherent

FIG. 3. Plasma scenario of the shot 28338 from the tokamak Tore Supra,
Cadarache. The duration of the shot is 18 s. The plasma density fluctuations
are measured by a fast reciprocating Langmuir probe. When the probe is
2.8 cm away from the LCFS in the SOL, the signal is acquired during time
windows of 8 ms.

FIG. 4. Signal S!t" of duration 8.192 ms, corresponding to the saturation
current fluctuations measured at 1 MHz in the SOL of the tokamak Tore
Supra, Cadarache. !Top" Total signal S, !middle" coherent part SC, and !bot-
tom" incoherent part SI.

042304-6 Farge, Schneider, and Devynck Phys. Plasmas 13, 042304 !2006"

Downloaded 26 Apr 2006 to 129.199.72.6. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp

Farge	et	al.	2006
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Example

Density fluctuations = bursts + incoherent fluctuations

70

has been recorded in the middle of the plasma current pla-
teau. The large radius was R=2.33 m, the small radius a
=0.77 m, the mean plasma density n̄i=1.37!1019 m−3, the
plasma current Ip=0.84 MA and the edge safety factor q
=6.71. Moreover, 2.1 MW of lower hybrid waves were ap-
plied to the plasma.

The ion saturation current fluctuations were measured by
a fast reciprocating Langmuir probe. The total duration of the
probe motion into the plasma was 300 ms. When the probe
reached 2.8 cm away from the last closed flux surface
!LCFS", the signal was recorded at 1 MHz during 8 ms !Fig.
3", which gave N=213=8192 samples. A high-pass filter at
frequency 0.1 kHz and a low-pass filter at frequency
500 kHz have been applied to eliminate both low frequencies
and aliasing.

B. Extraction of coherent bursts

We use the wavelet extraction algorithm to split the sig-
nal S!t" !Fig. 4, top" into two orthogonal components, the
coherent bursts, SC!t" !Fig. 4, middle", and the incoherent
turbulent fluctuations, SI!t" !Fig. 4, bottom". The optimal
threshold value has been obtained after n=12 iterations of
the algorithm !Fig. 5".

As results, we observe that the coherent signal SC!t",
made of 5.8%N wavelet coefficients, retains 86.6% of the
total variance and the extrema are preserved !Table I". In
contrast, the incoherent contribution SI!t", is made of
94.2%N wavelet coefficients but contributes to only 13.4%
of the total variance !Table I", which corresponds to a signal
to noise ratio SNR=10 log10!"2 /"I

2"=8.72 dB.
The decomposition shows that the bursty and coherent

contribution to the signal dominates over the turbulent back-
ground fluctuation, and this more strongly than what has
been found with previous methods based on clipping.10

Figure 6 shows the PDFs in semi-logarithamic coordi-
nates for the total, coherent and incoherent contributions,
estimated using histograms with 50 bins and integrals nor-
malized to one. The PDFs of the total signal and the coherent

FIG. 3. Plasma scenario of the shot 28338 from the tokamak Tore Supra,
Cadarache. The duration of the shot is 18 s. The plasma density fluctuations
are measured by a fast reciprocating Langmuir probe. When the probe is
2.8 cm away from the LCFS in the SOL, the signal is acquired during time
windows of 8 ms.

FIG. 4. Signal S!t" of duration 8.192 ms, corresponding to the saturation
current fluctuations measured at 1 MHz in the SOL of the tokamak Tore
Supra, Cadarache. !Top" Total signal S, !middle" coherent part SC, and !bot-
tom" incoherent part SI.
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has been recorded in the middle of the plasma current pla-
teau. The large radius was R=2.33 m, the small radius a
=0.77 m, the mean plasma density n̄i=1.37!1019 m−3, the
plasma current Ip=0.84 MA and the edge safety factor q
=6.71. Moreover, 2.1 MW of lower hybrid waves were ap-
plied to the plasma.

The ion saturation current fluctuations were measured by
a fast reciprocating Langmuir probe. The total duration of the
probe motion into the plasma was 300 ms. When the probe
reached 2.8 cm away from the last closed flux surface
!LCFS", the signal was recorded at 1 MHz during 8 ms !Fig.
3", which gave N=213=8192 samples. A high-pass filter at
frequency 0.1 kHz and a low-pass filter at frequency
500 kHz have been applied to eliminate both low frequencies
and aliasing.

B. Extraction of coherent bursts

We use the wavelet extraction algorithm to split the sig-
nal S!t" !Fig. 4, top" into two orthogonal components, the
coherent bursts, SC!t" !Fig. 4, middle", and the incoherent
turbulent fluctuations, SI!t" !Fig. 4, bottom". The optimal
threshold value has been obtained after n=12 iterations of
the algorithm !Fig. 5".

As results, we observe that the coherent signal SC!t",
made of 5.8%N wavelet coefficients, retains 86.6% of the
total variance and the extrema are preserved !Table I". In
contrast, the incoherent contribution SI!t", is made of
94.2%N wavelet coefficients but contributes to only 13.4%
of the total variance !Table I", which corresponds to a signal
to noise ratio SNR=10 log10!"2 /"I

2"=8.72 dB.
The decomposition shows that the bursty and coherent

contribution to the signal dominates over the turbulent back-
ground fluctuation, and this more strongly than what has
been found with previous methods based on clipping.10

Figure 6 shows the PDFs in semi-logarithamic coordi-
nates for the total, coherent and incoherent contributions,
estimated using histograms with 50 bins and integrals nor-
malized to one. The PDFs of the total signal and the coherent

FIG. 3. Plasma scenario of the shot 28338 from the tokamak Tore Supra,
Cadarache. The duration of the shot is 18 s. The plasma density fluctuations
are measured by a fast reciprocating Langmuir probe. When the probe is
2.8 cm away from the LCFS in the SOL, the signal is acquired during time
windows of 8 ms.

FIG. 4. Signal S!t" of duration 8.192 ms, corresponding to the saturation
current fluctuations measured at 1 MHz in the SOL of the tokamak Tore
Supra, Cadarache. !Top" Total signal S, !middle" coherent part SC, and !bot-
tom" incoherent part SI.
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has been recorded in the middle of the plasma current pla-
teau. The large radius was R=2.33 m, the small radius a
=0.77 m, the mean plasma density n̄i=1.37!1019 m−3, the
plasma current Ip=0.84 MA and the edge safety factor q
=6.71. Moreover, 2.1 MW of lower hybrid waves were ap-
plied to the plasma.

The ion saturation current fluctuations were measured by
a fast reciprocating Langmuir probe. The total duration of the
probe motion into the plasma was 300 ms. When the probe
reached 2.8 cm away from the last closed flux surface
!LCFS", the signal was recorded at 1 MHz during 8 ms !Fig.
3", which gave N=213=8192 samples. A high-pass filter at
frequency 0.1 kHz and a low-pass filter at frequency
500 kHz have been applied to eliminate both low frequencies
and aliasing.

B. Extraction of coherent bursts

We use the wavelet extraction algorithm to split the sig-
nal S!t" !Fig. 4, top" into two orthogonal components, the
coherent bursts, SC!t" !Fig. 4, middle", and the incoherent
turbulent fluctuations, SI!t" !Fig. 4, bottom". The optimal
threshold value has been obtained after n=12 iterations of
the algorithm !Fig. 5".

As results, we observe that the coherent signal SC!t",
made of 5.8%N wavelet coefficients, retains 86.6% of the
total variance and the extrema are preserved !Table I". In
contrast, the incoherent contribution SI!t", is made of
94.2%N wavelet coefficients but contributes to only 13.4%
of the total variance !Table I", which corresponds to a signal
to noise ratio SNR=10 log10!"2 /"I

2"=8.72 dB.
The decomposition shows that the bursty and coherent

contribution to the signal dominates over the turbulent back-
ground fluctuation, and this more strongly than what has
been found with previous methods based on clipping.10

Figure 6 shows the PDFs in semi-logarithamic coordi-
nates for the total, coherent and incoherent contributions,
estimated using histograms with 50 bins and integrals nor-
malized to one. The PDFs of the total signal and the coherent

FIG. 3. Plasma scenario of the shot 28338 from the tokamak Tore Supra,
Cadarache. The duration of the shot is 18 s. The plasma density fluctuations
are measured by a fast reciprocating Langmuir probe. When the probe is
2.8 cm away from the LCFS in the SOL, the signal is acquired during time
windows of 8 ms.

FIG. 4. Signal S!t" of duration 8.192 ms, corresponding to the saturation
current fluctuations measured at 1 MHz in the SOL of the tokamak Tore
Supra, Cadarache. !Top" Total signal S, !middle" coherent part SC, and !bot-
tom" incoherent part SI.
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Example

pdf of density fluctuations = exponential + Gaussian

71contribution are skewed and present the same behavior: posi-
tive values have exponential tails with p!S"!exp!−5/2S",
whereas negative values yield a Gaussian behavior !Fig. 6".
In contrast, the PDF of the incoherent component is almost
symmetric, with skewness 0.38, instead of 2.56 and 2.84 for
the total and coherent part, respectively. It has a quasi-
Gaussian shape with flatness 4.03, instead of 12.00 and
14.22, respectively !Fig. 6".

C. Fourier spectrum and modified periodogram

To study the spectral distribution of the density variance
for the different components, we consider the Fourier spec-
trum

E!"" =
1
2

#Ŝ!""#2, !9"

where Ŝ!"" denotes the Fourier transform as defined in Eq.
!3". As estimator for the spectrum we take the periodogram,
which is a discrete version of Eq. !9", although it is known to

be an inconsistent estimator due to the presence of
oscillations.28 To obtain a consistent estimator we also com-
pute the modified periodogram, by first tapering the data
with a raised cosine window !affecting 40 data points at each
boundary", and then convolving the periodogram with a
Gaussian window !with standard deviation of 40 data
points". Figure 7 shows the periodogram and the modified
periodogram for S, SC, and SI, which confirms that the latter
yields a stabilized estimator of the spectrum, presenting no
more spurious oscillations.

D. Wavelet spectrum

The wavelet decomposition, given in Eq. !1", yields the
distribution of the variance of the signal scale per scale,
which is called scalogram.19 It is defined as

Ẽj =
1
2 $

i=0

2j−1

#S̃ji#2. !10"

Parseval’s theorem implies that E=$ j#0Ẽj. Using the rela-
tion " j ="$2 j between the scale index j and the frequency ",
the wavelet spectrum can be defined as Ẽ!""= Ẽj ·2−j, with
"$ being the centroid frequency of the mother wavelet
whose value is "$=1.3 for the Coifman 12 wavelet used
here. It corresponds to a smoothed version of the Fourier
spectrum !9", the smoothing kernel being the square of the
Fourier transform of the wavelet, since

Ẽ!"" =
1

"$
%

0

+%

E!"!"&$̂'"$"!
"

(&2

d"!. !11"

Note that, as frequency increases, i.e., when one goes to
small scale, the smoothing interval becomes larger, which
explains why the wavelet spectrum is a well-conditioned sta-
tistical estimator. The advantage of the wavelet spectrum in
comparison to the modified periodogram is that the smooth-

FIG. 5. Threshold value &n vs iteration number n.

TABLE I. Statistical properties of the signal S!t" from the tokamak Tore
Supra, Cadarache, for the signal and its coherent and incoherent components
using the Coifman 12 orthogonal wavelet.

Properties
Total

S
Coherent

SC
Incoherent

SI

Number of coefficients 8192 479 7713

Percent of coefficients 100 5.8 94.2

Minimum value −0.284 −0.282 −0.307

Maximum value 1.689 1.686 0.374

Mean value 0.019 0.019 '10−11

Variance (2 0.0417 0.0361 0.0056

Percent of variance 100 86.6 13.4

Skewness 2.564 2.842 0.383

Flatness 12.001 14.224 4.026

FIG. 6. Probability density function p!S", estimated using histogram with
50 bins. PDF of the total signal S !green dashed line", of the coherent com-
ponent SC !red solid line", and of the incoherent component SI !blue dotted-
dashed line", together with a Gaussian fit with variance (I

2 !black dotted
line".
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original	data
coherent	part
incoherent	part

(Farge	et	al.	2006)

Figure 15: Energy flux: total (green), coherent (red) and incoherent (blue). The
split is made using complex valued wavelets.

3.3 Application to 2D experimental movies from toka-
maks

3.3.1 Tomographic reconstruction using wavelet-vaguelette decom-
position

Cameras installed in tokamaks aquire images which are di�cult to interpret,
since the three-dimensional structure of the plasma is mapped onto two space
dimensions and thus flattened in a non-trivial way. This implies that the re-
ceived flux cannot be directly related to the volumic emissivity of the plasma,
which is a major limitation of such optical diagnostics. The reason is that the
photons collected by each pixel on the camera sensor have been emitted along
a corresponding ray, rather than out of a single point in space. Nevertheless
the three-dimensional radiation can be related to the two-dimensional image
using tomographic reconstruction, because the dominant structures in tokamak
edge turbulence happen to be field-aligned filaments, commonly known as blobs.
They have a higher density than their surroundings, and their structure varies
more slowly along magnetic field lines than in their orthogonal directions.

Mathematically the tomographic reconstruction corresponds to an inverse
problem which has a formal solution under the assumed symmetry, but is ill-
posed in the presence of noise. Taking advantage of the slow variation of the
fluctuations along magnetic field lines in tokamaks, this inverse problem can be
modelled by a helical Abel transform, which is a Volterra integral operator of
the first kind. In [33] we proposed a tomographic inversion technique, based on
a wavelet-vaguelette decomposition and coupled with wavelet denoising to ex-
tract coherent structures, that allows to detect individual blobs on the projected

26

Energy	flux	vs	Sme	
(Schneider	et	al.,	2015)
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MHD simulations
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Example

Application to 3D resistive MHD turbulence simulations 
(Yoshimatsu et al., 2009)
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33

VorScity					= current	sheets +						dissipaSve	
incoherent	structures

(Schneider	et	al.,	2015)
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Take home message

Multiscale decompositions offer a natural description of 
plasma phenomena 

The discrete wavelet transform is more relevant than the 
continuous one for extracting structures. 

Coherent structures ≠ noise

74



T.	Dudok	de	Wit	/	Davos	8/2015 75



Sparsity
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Sparsity

We saw that the discrete wavelet transform of a time 
series generally has few outstanding coefficients

77
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Sparsity and compression

By keeping a small fraction of the largest coefficients we 
can achieve high compression rates (JPEG2000 
standard) 

The time series is sparse in the wavelet domain
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Sparsity : example

Example : sine wave 
 
 
 
 
 
 
 

Fourier representation is better suited here  
(does it provide physical invariants?)
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Sparsity

Sparsity = find the representation (alphabet & grammar) 
that offers the most compact representation of the data
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Sparsity

What is the best alphabet / grammar ? 

Two possibilities
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The	alphabet/grammar	
are	UNknown	 

➞	infer	them	from	the	
data	(empirical)

The	alphabet/grammar	
are	known	  

➞	model	them	(Fourier	
modes,	…)

Blind	source	separaSon
Find	the	alphabet	(sources)	
from	a	mixture	with	the	
least	a	priori	informaSon
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“Cocktail party problem”

82
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Assumptions

Frequent assumptions  
the mixture is linear → otherwise intractable 
the mixture is instantaneous (non convolutive)→ not 
always realistic, but eases the solution. Can be alleviated. 
the sources are sparse → they are coherent in time, in 
space, or both
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Neutron monitor data

Neutrons are produced in the 
atmosphere by cosmic ray impacts 
They are a proxy for the cosmic ray 
flux & solar proton events
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Neutron monitor data

All monitors see the same variations, with some subtle 
differences
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Neutron monitor data

What the physics is telling us  
 
 
The observed flux is a linear superposition of different 
contributions that are ~ independent 

anisotropy of the cosmic flux 
modulation by the solar magnetic field (Forbush decreases) 
modulation by the geomagnetic field (hardness) 
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Assumptions

Consider a separable solution is separable  
 
 

The different modulation amplitudes  Vk(t)  are 
independent  ⟹  use Independent component 
analysis (ICA)
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Results

98.4 % of the variance can be reconstructed 
with just 4 modes out of 43
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Interpretation

This is purely statistical (empirical) but it suggests that 
specific physical processes are at play
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Results
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Physical interpretation
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Physical interpretation

Power spectral density reveals differing origins
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Inpainting

Inpainting = reconstruct lost information in images or 
time series 

Use sparsity & wavelets to recover that information from 
local context (intensity, texture, patterns, …)
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Inpainting : example

99

InpainSng	is	an	ancient	art

Staline	with/without	Nicolaï	Yezhov	
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Inpainting : example

100
Fig. 4. Left: original image. Right: inpainting result obtained with the algorithm
of Criminisi et al. [12], images taken from their paper.

the geometry and texture components of the image, and showed that the model
can be easily adapted for image inpainting. A further description of this model
follows.

Let u be an image represented as a vector in RN . Let the matrices Dg, Dt

of sizes N ⇥ kg and N ⇥ kt represent two dictionaries adapted to geometry and
texture, respectively. If ↵g 2 Rkg and ↵t 2 Rkg represent the geometry and
texture coe�cients, then u = Dg↵g +Dt↵t represents the image decomposition
using the dictionaries collected in Dg and Dt. A sparse image representation is
obtained by minimizing

min
(↵g,↵t):u=Dg↵g+Dt↵t

k↵gkp + k↵tkp, (3)

where p = 0, 1. Although the case p = 0 represents the sparseness measure
(i.e., the number of non zero coordinates) it leads to a non-convex optimization
problem whose minimization is more complex. The case p = 1 yields a convex
and tractable optimization problem leading also to sparsness. Introducing the
constraint by penalization (thus, in practice, relaxing it) and regularizing the ge-
ometric part of the decomposition with a total variation semi-norm penalization,
Elad et al [15] propose the variational model:

min
(↵g,↵t)

k↵gk1 + k↵tk1 + �ku�Dg↵g �Dt↵tk2
2

+ �TV (Dg↵g), (4)

where TV denotes the total variation, �, � > 0. This model can be easily adapted
to a model for image inpainting. Observe that u � Dg↵g � Dt↵t can be inter-
preted as the noise component of the image and � is a penalization parameter

Criminisi	et	al.,	2004
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Inpainting : example

Another example with texture preservation

101

Fig. 3. Left: original image, inpainting mask ⌦ in black. Right: inpainting result
obtained with Efros and Leung’s algorithm, images taken from their paper [14].

ality of the patches with techniques like Principal Component Analysis (PCA),
or using randomized approaches.

While most image inpainting methods attempt to be fully automatic (aside
from the manual setting of some parameters), there are user-assisted methods
that provide remarkable results with just a little input from the user. In the
work by Sun et al. [27] the user must specify curves in the unknown region,
curves corresponding to relevant object boundaries. Patch synthesis is performed
along these curves inside the image gap, by copying from patches that lie on the
segments of these curves which are outside the gap, in the “known” region.
Once these curves are completed, in a process which the authors call structure
propagation, the remaining empty pixels are inpainted using a technique like the
one by Ashikhmin [2] with priorities as in Criminisi et al. [12]. Barnes et al.
[5] accelerate this method and make it interactive, by employing randomized
searches and combining into one step the structure propagation and texture
synthesis processes of Sun et al. [27].

The role of sparsity

After the introduction of patch-based methods for texture synthesis by Efros
and Leung [14], and image inpainting by Criminisi et al [12], it became clear
that the patches of an image provide a good dictionary to express other parts
of the image. This idea has been successfully applied to other areas of image
processing, e.g. denoising and segmentation.

More general sparse image representations using dictionaries have proven
their e�ciency in the context of inpainting. For instance, using overcomplete
dictionaries adapted to the representation of image geometry and texture, Elad
et al. [15] proposed an image decomposition model with sparse coe�cients for

Efros	&	Leung,	1999
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Inpainting : example

Solar image taken in the Ca II K line (293 nm) :  
98% of pixels were removed and then filled by 
inpainting

102

original	image only	2%	of	pixels	ler reconstructed	image
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Inpainting : example

Inpainting can also be applied to time series, to fill in 
data gaps

103
year
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Example	:	total	solar	irradiance	observaSons	(from	space)
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Inpainting : example

Inpainting can also be applied to time series, to fill in 
data gaps

104

Example	:	total	solar	irradiance	observaSons	(from	space)
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Take home message

Think multiscale (because plasmas are instrinsically 
nonstationary) 

Don’t use a method just because everyone has always 
done so before.

106

“We	use	the	best	physical	models	we	can,	the	best	computers	
for	processing	data	(…	)	But	there	is	one	weak	link.	 

We	interpret	the	data	using	mathemaDcs	that’s	100	years	old.” 
 

(Dana	McKenzie,	New	ScienSst,	2004)
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Further reading
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guides and literature

Ten Lectures on Wavelets
I. Daubechies

Essential Wavelets for 
Statistical Applications and 

Data Analysis 
T. Ogden

A Wavelet Tour of Signal 
Processing
S. Mallat

• M. Farge et al., Wavelets and Turbulence, Proc. IEEE, 84(4), 639, (1996)
• A. Walden & A. Cristan, Proc. R. Soc. Lond. A, 454, 2243 (1998)
• K. Kiyani et al, ApJ, (2013)

Wavelet Methods for Time 
Series Analaysis

D. Percival & A. Walden

guides and literature

Ten Lectures on Wavelets
I. Daubechies

Essential Wavelets for 
Statistical Applications and 

Data Analysis 
T. Ogden

A Wavelet Tour of Signal 
Processing
S. Mallat

• M. Farge et al., Wavelets and Turbulence, Proc. IEEE, 84(4), 639, (1996)
• A. Walden & A. Cristan, Proc. R. Soc. Lond. A, 454, 2243 (1998)
• K. Kiyani et al, ApJ, (2013)

Wavelet Methods for Time 
Series Analaysis

D. Percival & A. Walden

S. Mallat 
A wavelet tour of signal processing  

(Academic Press, 2008)

T. Ogden 
Essential wavelets for  statistical 
applications and data processing 
(Academic Press, 1996)

E. Feigelson & G. Babu 
Modern statistical methods for astronomy 
(Cambridge, 2012)

G. James, et al., An Introduction to 
Statistical Learning: with Applications in R  

(Springer, 2013).

Collection of articles at: https://tinyurl.com/les-houches-2017


