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R
ecent satellite missions have provided 
and continue to provide us with vast 
amounts of data on radiation mea-
surements that generally present 
themselves as superpositions of 

various cosmological sources, most impor-
tantly cosmic microwave background (CMB) 
radiation and other galactic and extragalactic 
sources. We would like to obtain the esti-
mates of these sources separately since they 
carry vital information of cosmological sig-
nificance about our Universe. Although initial 
attempts to obtain sources have utilized blind 
estimation techniques, the presence of impor-
tant astrophysical prior information and the 
demanding nature of the problem makes the use of 
informed techniques possible and indispensable. In 
this article, our objective is to present a formulation of 
the problem in Bayesian framework for the signal pro-
cessing community and to provide a panorama of Bayesian 
source separation techniques for the estimation of cosmologi-
cal components from the observation mixtures. 

INTRODUCTION
One of the most important discoveries of the past century was 
undoubtedly the 1964 observation of CMB radiation by Penzias 
and Wilson. Their accidental discovery gave the much-
searched for proof of the hot big bang theory, which was pre-
dicted by Gamov in 1948. 

The hot big bang model, which aims to provide an explana-
tion for the formation of our Universe, has the main thesis that 

the Universe evolved into its current state expanding and cool-
ing from an initially much denser and hotter Universe. 
According to this theory, the very early Universe was character-
ized by a very high energy density and very high temperatures 
and pressures and was rapidly expanding and cooling. 
Approximately 10237 s into the expansion, a phase transition 
caused a cosmic inflation, during which the Universe grew expo-
nentially. Matter was dominating the Universe and radiation was 
trapped in matter. The Universe continued to grow in size and 
to cool down, hence the typical energy of each particle contin-
ued to decrease. A few minutes into the expansion, as the 
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Universe cooled, the rest of the 
mass energy density of matter 
started to dominate that of the 
photon radiation. After about 
379,000 years, the electrons 
and nuclei combined into 
atoms (mostly hydrogen); 
hence the radiation decoupled from matter and was freely 
released through space. CMB radiation is this radiation when 
light was freed for the first time. 

Initially, this radiation had a temperature of about 3,000 K  
but as the Universe continued to expand, the temperature 
dropped. Today, about 14 billion years later, CMB is still detect-
able but at a much lower temperature, around 2.7 K. Like fos-
sil remains giving us a chance to discover now extinct species, 
this relic radiation carries immensely important information 
about the Universe, and therefore it is of tremendous impor-
tance to make a full-sky measurement of CMB. First, it is the 
picture of the Universe shortly after it has started and houses 
vital information on the early Universe. Second, it has some-
thing to tell about the current Universe: the inhomogeneities 
in the CMB are the seeds of the galaxies that exist today, and it 
provides us information about the formation of the galaxies 
and the topology of the Universe. Third, CMB not only informs 

us about the past and present 
but also about the future of the 
Universe. The precise measure-
ment of CMB and the calcula-
tion of angular spectrum and 
certain cosmological constants 
from it will enable us to choose 

between competing theories for the future evolution of our 
Universe. In particular, we will be able to tell whether the 
Universe will continue to expand, ending up in a zero-entropy 
state, whether its expansion will stop and the dimension will 
stabilize, or whether it will be followed by a phase of shrinking 
that will end with a “big crunch.” 

To be able to answer such important questions and others, 
many attempts have been made to measure the CMB accurate-
ly. These attempts range from ground-based measurements 
such as the degree angular scale interferometer (DASI) [1] to 
balloon missions such as balloon observations of millimetric 
extragalactic radiation and geophysics (BOOMERANG) [2] and 
to satellite missions such as cosmic background explorer 
(COBE) [3] and the Wilkinson microwave anisotropy probe 
(WMAP) [4]. The COBE satellite mission of NASA in 1992 has 
detected small-amplitude fluctuations or anisotropies in otherwise 
flat-looking CMB. Since the anisotropies in CMB are the main 
information carrying part, it is vital to recover them in high reso-
lution. Considering COBE’s limited angular resolution 17° 2 , it 
became evident that more accurate measurements were needed. 
The WMAP [4] was launched in 2001 with the aim of obtaining 
much higher-resolution maps of the Universe (0.23–0.93° angular 
resolution) in five frequency bands between 22–100 GHz. Finally, 
another satellite mission, the Planck surveyor, [which will provide 
images with even higher resolution (between 0.083–0.55°) and 
higher sensitivity on a wider frequency span (nine frequency bands 
between 30–857 GHz)], was launched on 14 May 2009 by the 
European Space Agency [5]. The frequency bands in which WMAP 
and Planck operate can be seen in Figure 1. 

An important problem is that the signals measured by these 
satellites do not contain radiation only from CMB but also 
contributions from a number of other sources, namely fore-
ground radiations and extragalactic sources in addition to 
antenna receiver noise. Foreground sources emission from our 
galaxy includes synchrotron, dust, and free-free emission. 
Extragalactic sources include point sources and Sunyaev-
Zeldovich (SZ) clusters. 

The recovery of the CMB signal from this mixture of vari-
ous sources is a major task and is the subject of this article. 
One main approach is to consider all signals other than CMB 
as contaminants and try to recover only CMB. Another 
approach, which will be followed here, is to try to recover all 
sources separately and make a picture of other sources as well 
as CMB. The motivation of this approach is that the other 
sources also carry important information about the Universe, 
and in particular  about our galaxy. 

Various works over the last decade have addressed the prob-
lem in a source-separation framework. Many early publications 
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[FIG1] Frequency bands of (a) WMAP, (b) Planck satellites, and 
cosmological sources [4], [6]. Figures used with permission.
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on the problem adopted a blind 
approach and employed tech-
niques such as independent 
component analysis. Such 
techniques assume no prior 
information about the sources, 
their distributions, spectral indices, or the noise other than 
that the mixing is linear and that the noise is Gaussian. Blind 
estimation also does not lend itself easily to error analysis. 
However, the cosmological problem under investigation has a 
wealth of prior information. Many researchers assume the 
Gaussianity of the CMB; we have very good knowledge about 
the antenna receiver noise and the beam pattern; the mixing 
parameters are dictated by the spectral indices, about the 
range of which we have a good idea from previous measure-
ments, and so on. 

A mathematical framework is needed for incorporating this 
rich prior information into the formulation of the problem. This 
framework is provided successfully by Bayesian analysis that has 
the following advantages over blind methods: 

The prior information is formulated with a probability den-1) 
sity which conveniently modifies the likelihood so that the 
solution is “biased” to more probable areas of the solution 
space and improbable areas are avoided. This provides impor-
tant savings in the search for a solution. 

Bayesian estimation is an excellent learning model that 2) 
mimics our learning mechanism. Bayesian estimation 
can be easily cascaded. With the arrival of new observa-
tions, we can simply update our previous analysis with 
the new likelihood. 

Even when we do not have prior information, utilizing the 3) 
Bayesian framework provides us with means to perform error 
analysis easily. 
In contrast to blind source separation, the Bayesian frame-

work provides us with means of informed source separation. 
The demanding nature of the physics of the problem has stim-
ulated the incorporation of prior information in the mathe-
matical formulation and the design of more and more 
elaborate techniques. In that sense, the cosmology problem 
have presented an ideal ground for the advance of source sepa-
ration methodology. Current state-of-the-art techniques 
involve numerical Bayesian techniques and multilayer hierar-
chical statistical models. With the advance of the available 
methodology, issues that were not considered before such as 
the nonstationarity of the mixing, convolutive effects of the 
beam, and the statistical dependence between sources is also 
addressed, and further developments in the methodology are 
stimulated. 

In this tutorial, we aim to present an easy-to-grasp Bayesian 
formulation and give a wide account of existing work in the 
literature. Due to the nature of the problem, many exciting 
new methodological directions are still under investigation 
and the article therefore is incomplete, however, we address 
some yet inconclusive areas of research and try to project new 
challenges in the data to excite more research in the field. 

We hope that the signal pro-
cessing audience will not only 
find the cosmological problem 
interesting to read but will also 
enjoy following the develop-
ment of novel source separa-

tion methodologies provoked by a scientific problem. 

PROBLEM STATEMENT
We start by giving a simple observation model adopted widely in 
the literature. 

It is widely assumed [7], [8] that each radiation process 
s|n 1j, h, n 2  from the microwave sky has a spatial pattern sn 1j, h 2  
that is independent of its frequency spectrum Fn 1n 2  
 s|n 1j, h, n 2 5 sn 1j, h 2Fn 1n 2 ,   n5 1, c, N, (1) 

where j and h are angular coordinates on the celestial sphere and 
n is frequency. The total radiation observed in a certain direction 
at a certain frequency is given by the sum of a number N of signals 
(processes, or components) described in (1), where subscript n is 
the process index. Assuming that the satellite observing beam in 
each measurement channel at the specified frequency is spatially 
invariant, we may write the beam-smoothing as a convolution and 
the observed signal at M different frequencies can be modeled as 

 X 1j, h 2 5 P # A S 1j, h 2 1 E 1j, h 2 , (2) 

where X5 5xm, m5 1, c, M6  is the M 3 J-matrix of the 
observations, with xm5 5xm, j, j5 1, c, J6 being the observa-
tion in channel m (with central frequency nm) over J pixels. A is 
an M 3 N mixing matrix, S5 5sn, n5 1, c, N6 is the N 3 J- 
matrix  of  the individual  source processes ,  and 
E5 5em, m5 1, c, M6 is the M 3 J-matrix of instrumental 
noise. The elements of the matrix P give the beam profile at each 
channel frequency. The elements of A are related to the source 
spectra through the following formula:

 amn5 3Fn 1n 2bm 1n 2dn,  (3) 

where bm 1n 2  is the instrumental frequency response in the mth 
measurement channel, which is known. If we assume that the 
source spectra are constant within the passbands of the different 
channels, (3) can be rewritten as 

 amn5 Fn 1nm 23bm 1n 2dn. (4) 

The element amn is thus proportional to the spectrum of the 
nth source at the center frequency nm of the mth channel. 

It has been preferred to work in the spatial frequency domain 
by several researchers [7], [9]–[11] due to a number of factors: 
the beam effects turn into a simple multiplication rather than 
convolution, it makes it easier to deal with varying resolution of 
each channel, and most importantly, it is very suitable to work 
with CMB, the angular spectrum of which is of central 

CMB NOT ONLY INFORMS US ABOUT 
THE PAST AND PRESENT BUT 
ALSO ABOUT THE FUTURE OF 

THE UNIVERSE.
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 importance. In addition to these advantages, some techniques 
[12], [13] specifically exploit the spectral diversity of the sources. 

However, there is an important counter argument against 
working in the frequency domain: although CMB is stationary 
(or homogeneous and isotropic in cosmology terminology), 
the foregrounds and the antenna receiver noise are highly 
non stationary. The spectral indices of the foregrounds, in par-
ticular of the galactic dust, is spatially varying. This renders 
the power spectrum for these sources not well defined. This 
problem was underlined in [10], where the authors suggested 
making a Taylor expansion of the intensity and using the first 
few terms. However, the number of terms that one can use is 
limited such that the total number of fields to be reconstruct-
ed can not exceed the number of frequencies at which obser-
vations are made. Increased number of terms also increase 
the problem size and the computational complexity. Such 
complications rather diminish the advantages of working in 
the frequency domain and one can argue that one might as 
well work in the spatial domain. In the rest of this article, we 
will make the derivations in the spatial domain and will not 
consider the beam effects. Hence, we consider the following 
observation model: 

 X5 AS1 E, (5) 

where X, A, S, and E are defined as above and the observation 
model consists of microwave amplitudes at M  frequencies 1n1, c, nM 2  over the sky at J pixels. 

COSMOLOGICAL COMPONENTS

CMB
The most important source among those that make up the 
celestial microwave radiation is the cosmic microwave radia-
tion and is the principal objective of the WMAP and Planck 
satellite missions. It is widely accepted that CMB is Gaussian 
[14], [15] although recently there have been debates on the 
deviation of CMB from Gaussianity. It is also widely expected 
to be stationary, as validated on WMAP data in [16], and that 
CMB anisotropies can be represented as the multiplication of a 
spatial template with a nonlinear function of the frequency. 

The CMB sources used in various work in the literature are 
generated synthetically using the CMBFAST software package, 
which assumes a spatially flat standard inflationary cold dark 
matter model with a Gaussian realization. 

The emission spectrum of the CMB is perfectly known, being 
a blackbody radiation [17]. In terms of antenna temperature, it is 

 Fcmb 1n 2 5 n 
2exp n3exp 1n 2 2 1 42, (6) 

where n 5 hn/kTCMB is the normalized frequency, h is Planck 
constant, and k is Boltzmann’s constant. Figure 2 shows a 
simulation of CMB as will be seen by Planck. 

GALACTIC COMPONENTS

SYNCHROTRON
Synchrotron radiation is generated by the electrons spiraling 
(hence accelerating) along magnetic fields. Although synchrotron 
radiation originates in the galaxy, it extends also to outside the 
galactic plane and is less concentrated in the galactic plane when 
compared to other galactic foreground components. The syn-
chrotron map commonly used for simulations in the literature is 
provided in the 408 MHz Haslam survey (see Figure 3) and 
extrapolated and scaled to Planck frequencies [18]. A large num-
ber of patches from this map were analyzed in [19], and it was 
shown that a Gaussian mixture with three to five components 
describes the histogram of the patch intensities with small error. 

The synchrotron emission can be modeled by a power law 
over a wide range of frequencies [17], that is, 

 Fsyn 1n 2 5 Ba n

n0, syn
bbs

, (7) 

where bs is the synchrotron spectral index, B and n0, syn are nor-
malization factors. Various work on the surveys carried out on 
different frequency bands place the synchrotron spectral index 
in 23.2 , bs , 22.3. 

GALACTIC DUST
Galactic dust is made up of small particles that range from the 
order of nanometers to micrometers. They are made of various 
materials including silicate and carbon. The shapes vary and 

[FIG3] The Haslam 408 GHz map that is frequently used as a 
synchrotron template [4]. (Courtesy of NASA.)

[FIG2] A simulation of CMB as will be seen by Planck [6]. 
(Courtesy of ESA.)
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they can be of crystalline or amorphous structure. Their radia-
tion is dominant especially in very high-frequency channels. 
Assuming a grey-body spectrum [17], 

 Fdust 1n 2 5 nbd11

exp 1n 2 1 2 , (8) 

where n 5 hn/kTd is the normalized frequency, h is Planck 
constant, k is Boltzmann’s constant, and Td is the physical 
dust temperature. 

A frequently used galactic dust template is given in Figure 4. 

FREE-FREE EMISSION
Free-free emission or “Bremsstrahlung” emission is caused by 
the collision of free electrons with heavy ions in the ionized 
medium. Electrons lose energy in these collisions and emit pho-
tons. The emission can be described with [17] 

 Ffree 1n 2 5 A freea n

n0,free
b22.14

. (9) 

The free-free emission as estimated by the WMAP consortium is 
given in Figure 5. 

EXTRAGALACTIC SOURCES

SUNYAEV-ZELDOVICH CLUSTERS
The SZ effect is generated with the inverse Compton scatter-
ing of photons from CMB on electrons. There are two versions 
of the SZ effect: kinetic and thermal. They can be observed in 
the presence of a cluster of galaxies although they can also be 
caused by any large body with hot ionized gas. The SZ effect is 
of major cosmological importance since it can help determine 
the value of Hubble’s constant. There are two different tenden-
cies in the literature: to consider SZ custers either as diffuse 
sources or as compact sources. 

POINT SOURCES
Point sources are caused by distant stars or galaxies that 
appear as localized, impulsive bursts of radiation. Unlike the 
sources discussed above, they are not diffuse sources: it is not 
possible to consider templates that scale in different frequen-
cies and each channel needs to be considered separately. Due 
to these properties, the general approach in the literature is 
to detect and remove them from radiation maps before start-
ing the component separation task. For more details on com-
pact sources, the reader is referred to [20]. 

For more detailed information on cosmological sources, the 
reader is referred to [6]. 

BLIND SOURCE SEPARATION APPROACHES 
TO COSMIC SOURCE ESTIMATION
Despite the presence of earlier work on the estimation of cosmo-
logical components from multifrequency measurements such as 
[21] by Brandt et al. who utilized nonlinear least squares tech-

niques for recovering components, some of the earliest work that 
utilize a full source separation approach were given in [22] and 
[8]. In these and other early work, the common followed 
approach was blind source separation. Blind source separation 
techniques do not assume any prior knowledge about the mixing 
or the sources and attempt to solve the problem using only 
observations. In particular, [8] uses independent component 
analysis (ICA) where (5) was solved using a gradient descent 
algorithm [23] for the recovery of CMB and galactic sources from 
synthetic Planck multispectral images; [22] made a comparative 
study of various ICA algorithms on Hubble telescope data; and in 
[24], a fixed-point algorithm, namely FastICA (FPICA) [25], was 
used on synthetic Planck images to obtain all-sky maps. 

Another blind identification technique is proposed by 
Cardoso et al. [12], [26] and is called spectral matching ICA, 
which matches the sample spectral covariance matrices that 
depend on the data to their theoretical values, which in turn 
depend on the unknown parameters. 

These techniques do not assume any prior knowledge about 
the mixing matrix or the cosmological sources other than the 
number and the independence of the sources, hence they are 
blind and ignore any available prior information. 

BAYESIAN SOURCE SEPARATION
We start with a basic Bayesian formulation of the source separa-
tion problem as primarily suggested by Knuth [27] and 
Mohammad-Djafari [28]. 

[FIG4] Predicted dust emission at 94 GHz by Finkbeiner et al. 
(1999) [4]. (Courtesy of NASA.)

[FIG5] Free-free emission as estimated by the WMAP 
consortium [4]. (Courtesy of NASA.)
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The essence of the Bayesian methodology is the Bayes’ 
theorem 

 p 1u 0 y 2 5 p 1y 0 u 2p 1u 2
p 1y 2 , (10) 

where u represents the vector containing model parameters and 
y the observations. The first term in the numerator is the likeli-
hood that describes the probability of the observation given the 
model. Classical estimation schemes such as maximum likeli-
hood utilize only this part that provides us with means of pre-
dicting based on our assumed model and comparing with 
observations. What is more interesting, however is the probabil-
ity of the model given the observations, which is given by 
p 1u 0 y 2  and is called the posterior probability. The second term 
in the numerator p 1u 2  gives the probability of the model and is 
the prior distribution. The denominator p 1y 2  is the probability 
of the observation and is called the evidence. Evidence does not 
depend on the model and can be ignored. 

The prior encodes, in probability terms, our prior knowledge or 
“belief  ” about the model before we observe the data. It can be seen 
as our probability model of the quantity or process we are studying 
before observation. Once the observation is made, the likelihood 
modifies or updates our prior model to the posterior model. The 
posterior then is the model that incorporates all information we 
have originating from our belief or prior knowledge and from the 
observations we make. Faced with new observations, we can use 
our existing posterior model as our new prior and update it with the 
likelihood coming from new data and so on. The Bayes theory is an 
excellent formulation of our learning process. 

Source separation is yet another estimation problem and can 
be modeled in the Bayesian framework. There are three important 
steps for Bayesian estimation: 1) adopting a model for the prob-
lem, i.e., construction of the likelihood; 2) formulating the prior 
information in the prior probabilities; and 3) evaluating the poste-
rior and search in the hypothesis space for the probable solutions. 

The second step is the critical design step where the 
researcher can make a change in the performance of technique 
by his choice of the prior. The most difficult computational part, 
however, is the final step. A careful analysis of the problem may 
suggest a hierarchical model with many nuisance and hyperpa-
rameters that need to be integrated out to obtain the estimates 
over parameters that are interest to us. In most cases other than 
special cases such as uniform priors or in the case of Gaussian 
likelihood, Gaussian priors this is an analytically intractable 
problem and expensive computational integration schemes need 
to be used. 

Considering the characterization of the spectral responses 
described in the section “Cosmological Components,” it is rea-
sonable to parameterize A with a vector of spectral indices 
u5 5bs, bd, c6 of considerably smaller dimension. We write 
the mixing matrix as A 1u 2  to emphasize this point. It is assumed 
throughout the literature on the estimation of cosmological 
sources from multichannel measurements that the cosmologi-
cal sources are independent, each defined by a prior distribution 
p 1sk 0  ck 2  with parameters ck. 

The goal is to estimate the sources S, the parameters 
c5 1c1, c, cns

2  associated with the models for S, u, and the 
noise variances s2, given the observation of x. 

For the cosmological component separation problem we can 
write the posterior as follows: 

 p 1S, c, u, s 0 x 2 ~ p 1x 0 S, A 1u 2 , s 2P 1S 0c 2  p 1c 2  p 1s 2  p 1u 2
 5 cqJ

j51
p1xj | sj, A 1u 2 , s2 d  cqN

n51
p 1sk | ck 2  p 1ck 2 d  p 1s 2p 1u 2 .

 (11) 

In the next few subsections, each component of this distribu-
tion is defined in turn [see (12)–(15)]. 

LIKELIHOOD
The error ej primarily arises from antenna receiver noise and can 
be reasonably assumed to be Gaussian distributed with zero 
mean. The errors are mutually independent within and between 
pixels j and frequency, and are assumed to be distributed at each 
frequency with standard deviation si. Most source separation 
studies, where noise is modeled, have assumed that the noise is 
i.i.d. while the noise is actually nonstationary, since while scan-
ning the sky the antenna makes multiple passes. For most CMB 
data, and certainly for Planck, the noise variances are known 
from extensive simulation. 

In works such as [29], to take care of the nonstationarity as 
well, a simple form of stochastic spatial dependence for the 
noise was adopted, since the noise variance is dependent on the 
number of observations at each point in the sky. This number 
may differ, according to the scanning schedule adopted by the 
detector. The number of measurements at pixel j is assumed 
known to be rj. Where rj $ 2, xj is taken to be the mean of the 
measurements and since the mean of rj i.i.d. Gaussian random 
variables is also Gaussian, the variance of the noise at pixel j is 
rj

2s2. The term p 1xj 0 sj, A 1u 2 , s 2  in (11) is therefore written as 

 p 1xj 0 sj, A 1u 2 , s 2 5 qM
m51

 
112p 2 1/2 rj sm

 expa2 

1xmj2 Am #  sj 2 2
2r2

js
2
i

b, 

  xmj [ R, (12) 

where Am is the mth row of A 1u 2 .
PRIORS
One of the earliest Bayesian formulation for cosmological compo-
nent estimation was given by Hobson et al. in [7], where the 
authors study a reduced problem assigning priors only to the 
sources. They proposed two different priors, the first one being a 
multivariate Gaussian prior for the sources. With Gaussian distri-
bution as a conjugate prior, this leads to a very simple posterior 
that leads to a Wiener filter solution. Unfortunately, despite its 
analytical ease, this is not a valid choice since the sources other 
than CMB are clearly non-Gaussian. Second, they propose an 
entropy prior for a maximum entropy solution. Again this prior is 
not based on the distributions of the sources and the choice is far 
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from optimal. Following on the same line, Jewell et al. [30] gave a 
general analytical framework of source separation and extended it 
to multiresolution source separation. They present the full 
Bayesian framework for the solution of the problem but do not 
specify priors. 

In some of the work that uses a Bayesian formulation for the 
cosmological parameter estimation from CMB measurements, 
such as in [31] and [11], the priors are taken to be uniform for the 
sake of simplicity. Hence, the posterior reduces to the likelihood. 
This choice retains most of the advantages of the Bayesian frame-
work such as error analysis, however the potential to incorporate 
prior information and hence reducing search space has not been 
exploited. Again, Gaussian prior was used for foregrounds in [32] 
for reasons of analytical simplicity. 

A number of other works propose more generic distributions 
to model foregrounds, in particular [19], [33], and [29], 
Gaussian mixture distributions are suggested based on the 
observation that foregrounds follow multimodal distributions. 
On simulated data, it has been demonstrated that a small num-
ber of Gaussian components is enough for close approximation 
of foreground histograms [19]. 

Modeling the distribution of skj, source k at pixel j, as a 
Gaussian mixture model (GMM) with an unknown number of 
components mk provides a very flexible but tractable class of mod-
els for the sources. Let mk5 1mk1, c, mkmk

2 , tk5 1tk1, c, tkmk
2  

and pk5 1pk1, c, pkmk
2  be the mixture component means, vari-

ances and weights for the kth source. Hence the parameters ck of 
the kth source are ck5 1mk, tk, pk, mk 2  and 

p 1sk 0ck 2 5qJ

j51
amk

c51
 

pkc"2ptkc

 expa2 

1skj2mkc 2 2
2tkc

b, skj [ R, (13) 

where sk5 5skj 0   j5 1, c, J 6. Let m5 1m1, c, mns
2 , t 51t1, c, tns

2 , p5 1p1, c, pns
2 , and m5 1m1, c, mns

2  denote 
the vectors of all mixture means, variances, weights, and num-
ber of components for all the sources, so that c5 1m, t, p, m 2 . 

The remaining terms in (11) are p 1ck 2 , p 1s 2 , and p 1u 2 . In 
[29], conjugate priors are suggested that facilitate the computa-
tion of the posterior and are flexible enough to incorporate use-
ful prior information. Given mk, the prior distributions for the 
means mk5 1mk1, c, mkmk

2  are assumed to be independent 
and identical Gaussian distributions with means jk and varianc-
es kk, the prior distribution of the variances tk5 1tk1, c, tkmk

2  
are assumed to be independent and identical gamma distribu-
tions with shapes ak and scales bk and the prior distribution of 
the weights pk is assumed to be a Dirichlet distribution with 
equal parameters 1dk, c, dk 2 . The number of components mk 
is assigned a geometric prior with mean lk, hence 

 p 1ck 2 5 G 1mkdk 2
G 1dk 2mk

 pkc
dk21 112lk

21 2mk21lk
21 

 3 aqmk

c51
1kk/2p 2 1/2 exp 120.5kk 

1mkc2jk 2 2 2
 3 bak

k   tak21
kc  

e2bk tkc

G 1ak 2 b.   (14) 

The prior distribution parameters themselves—jk, kk, ak, bk, dk, 
and lk, for k5 1, c, ns—are assigned values to reflect what is 
known currently about the values of the sources. 

Since antenna characteristics and sky-scanning strategy is 
completely known, the noise variances s2 are known, and so 
p 1s 2 5 1 at the specified value. If it were to be assumed 
unknown, the gamma distribution could be used as it is the 
conjugate distribution in this case. 

As mentioned above, rough bounds on the values of the 
spectral indices u are known. One can use independent normal 
distributions for each u, 

 p 1uk 2 5 1"2psu,k
 exp 12 1uk2mu,k 2 2/2s2

u,k 2  (15) 

with mean mu,k and standard deviation su,k so that major part of 
the prior probability lies within the rough bounds. Alternatively, 
uniform distributions in this range can also be used. 

A very important addition to this formulation is suggested 
in [38] and [41], where the CMB angular power spectrum was 
included in the posterior in (11), too. In this way, the angular 
spectrum, which houses important information about cosmo-
logical parameters, is obtained directly rather than calculating 
from the CMB map, which would require the mapping of the 
full sky first. 

In this section, we demonstrated how to develop the posteri-
or for the cosmological component separation problem in a 
general setup. It should be clear to the reader that as more 
information is obtained, one can change the priors and can 
build even more elaborate posteriors. If a simpler posterior is 
desired, one can also use noninformative or conjugate priors to 
that effect. 

IMPLEMENTING THE SOURCE SEPARATION: 
MARKOV CHAIN MONTE CARLO
The posterior developed in the previous section does not lend 
itself to an analytical solution when point estimates are desired. 
To obtain point estimates, we need to marginalize and integrate 
out the nuisance parameters and maximize the marginal poste-
riors depending on the choice of the estimator. The many 
dimensional integrations are prohibitive even when other priors 
used to obtain simpler posteriors. 

The remedy to this technical problem is Monte Carlo inte-
gration methods, in particular, the Markov chain Monte Carlo 
(MCMC). The Monte Carlo techniques let us evaluate complicat-
ed integrals by sampling rather than by analytical or numerical 
methods. They can render otherwise impossible integrations 
feasible, however this is only part of their advantage. If sampling 
is done in an intelligent way, significant computational gains 
and robustness are obtained. MCMC sampling achieves this by 
enforcing that the subsequent samples follow a Markov chain 
with certain properties, i.e., irreducibility or aperiodicity [34]. 
Sampling in such a Markov chain ensures that we converge to 
the target distribution regardless of our initial guess of priors. 
This final point is very important: basically, even if we start with 
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“wrong” priors, MCMC sam-
pling produces the correct 
posterior given enough obser-
vations. Then, the difference 
between choosing a good or bad 
prior reduces to the conver-
gence speed. 

The irreducibility and ape-
riodicity of the Markov chain is enforced by ensuring that the 
sampling leads to balanced transitions which is a sufficient 
condition [34], that is the probability of making a transition 
from a state i to j should be equal to the probability of the 
reverse transition. 

The most popular and general MCMC algorithm is 
Metropolis-Hastings, a pseudocode of which is given in Table 1, 
where q represents the proposal function from which samples 
are generated, p is the target distribution, i.e., the posterior, and 
u is the parameter vector. 

The need for using MCMC in the cosmological component 
separation problem was first mentioned by Jewell et al. in [30] 
but no demonstrations were provided. In their later work [32], 
they propose the Metropolis-Hastings method for sampling 
and estimate CMB power spectrum in the presence of fore-
ground sources. 

In problems such as source separation, the posterior may 
become too complicated to design a good proposal distribu-
tion. In such cases, if the conditional distributions are avail-
able, one can use a simpler MCMC algorithm called Gibbs 
sampling. In Gibbs sampling, the basic idea is to sample con-
secutively from conditional distributions of all variables. There 
are no acceptance ratios since all transitions are accepted. It 
can be shown that Gibbs sampling guarantees convergence to 
the target distribution [37], [34]. A simple pseudocode of Gibbs 
sampling is given in Table 2, where u1t22k represents the vector 
of all variables other than u 1t2k . 

Kuruoglu and Comparetti [33] and Wandelt et al. [38] 
independently suggest using Gibbs sampling and [33] 

reports results significantly 
better than obtained with 
blind techniques. 

Eriksen et al. [11] adopt a 
previously suggested frame-
work by Jewell et al. [30] and 
report results on WMAP data 
using Gibbs sampling. They 

used uniform priors all over, hence reducing the posterior to 
the likelihood. They later extended their method for joint com-
ponent separation and CMB power spectrum estimation [41] 
and introduced some prior measurements as templates to the 
observation equation as in [38]. They use noninformative pri-
ors for most of the variables. Wilson et al. [29], unlike most 
previous work, adopt a generic prior for the foregrounds 
(Gaussian mixtures with unknown number of components) 
and construct a hierarchical framework and perform again 
Gibbs sampling. 

In all of these works, the source separation is implemented 
in two stages: The first stage is Monte Carlo sampling of the 
posterior distribution of (11), specifically by an MCMC [34]. 
Once this is done, the second stage is to compute the point esti-
mates (generally the sample mean of the samples of the sourc-
es); this average is taken to be the estimated source. 

TOWARDS MORE ELABORATE 
MODELS AND ALGORITHMS

FASTER ALGORITHMS
Perhaps the main criticism to Bayesian source separation with 
sampling methods, MCMC in particular, is their computational 
load and slow convergence. Regarding speed, they cannot 
compete with analytical methods or blind methods such as 
FastICA. This renders testing of the method, of the models, 
and the priors a time consuming task, which probably is the 
fact responsible for the delayed acceptance of these techniques 
in the astrophysics community. There are various ways, how-
ever, that the technique can be accelerated. 

To speed up the algorithm, one can start with some good 
initial solutions, such as the results of the FastICA algorithm, 
and move on from there, hence avoiding long burn-in periods. 
Alternatively, one can use a pyramidal sampling scheme, start-
ing from low-resolution images, and then move to increasing-
ly higher resolutions with the low-resolution results as 
starting points. 

Another way to speed up MCMC is to use intelligent random 
walks, or state transition proposals such that more relevant 
parts of the space is explored and rejection rate is decreased. 
Such a scheme is provided by so-called Langevin sampling. In 
statistical physics, the Langevin equation is used to describe the 
Brownian motion of the particles in a potential and has been 
used to obtain a smart MC algorithm in [42]. Another parallel 
sampling algorithm is the Hamiltonian Monte Carlo, which is 
the generalized version of the Langevin sampler. Taylor et al. 
utilized Hamiltonian sampling for fast  estimation of CMB power 

[TABLE 1] METROPOLIS-HASTINGS SAMPLING.

1) INITIALIZE u 102 
2) FOR t5 1 TO T, T: METROPOLIS LOOP LENGTH 

• SAMPLE u| U 30, 1 4 
• SAMPLE u||q 1 u| 0 u 1t2 2  
• IF u , r 1u 1t2, u| 2 5min a 1, 

p 1 u| 2q 1u 1t2 0 u| 2
p 1u 1t2 2q 1 u| 0 u 1t2 2 b 

 u 1t1125 u|
 ELSE
 u 1t1125 u 1t2 

[TABLE 2] GIBBS SAMPLING.

1) INITIALIZE u 
102
1:K, K: DIMENSION OF THE PARAMETER VECTOR 

2) FOR t5 1 TO T  
• FOR k5 1 TO K 

– SAMPLE u 1t112
k 

| p 1uk 0 u1t22k 2

IN CONTRAST TO BLIND SOURCE 
SEPARATION, THE BAYESIAN 
FRAMEWORK PROVIDES US 
WITH MEANS OF INFORMED 

SOURCE SEPARATION.
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spectrum from observations 
[43]. Kayabol et al. implement-
ed the Langevin scheme [44] on 
the image source separation 
problem and report computa-
tional gains of two orders of 
magnitude when compared to 
regular Gibbs. 

Other strategies for improving MCMC can be found in [45]. 

FROM SIGNAL SEPARATION TO IMAGE SEPARATION
The vast majority of the techniques described up to this point 
perform one-dimensional (1-D) signal analysis, that is, convert 
the images first to 1-D signals before processing. On the other 
hand, the data under consideration are space radiation maps and 
contain important spatial information which is completely lost 
when converted to 1-D. This spatial information could be utilized 
to our profit for better separation. Few works attempt modeling 
the space dependence structure of the images (sources) and uti-
lize this additional information to benefit the separation process. 
In [46], authors build a Markov random field (MRF)-based model 
for pixel interactions and use edge preserving priors for pixel gra-
dients. The technique, which is called iterated conditional model, 
can be viewed as a naive Bayes method. 

A MRF model is defined in Gibbs formulation that models the 
statistical relation between neighboring pixels. The probability 
density of sn is expressed in a Gibbs formulation as 

 p 1sn 2 5 1
Z 1 b 2  e2U 1sn2, (16) 

where Z 1 b 2  is the partition function to ensure that the total 
 probabilit y 5 1 and the clique potential or energy is defined as 

 U 1sn,i 2 5 1
2

 a5i, j6[Cbr 1sn, i2 sn, j 2 , (17) 

where r[ is the potential function. The density given in (16) can 
be written in the vector form using the cliques in the eight com-
pass directions as 

 p 1sn 2 5 1
Z 1 b 2  exp e2a8

d51
br 1sn2Gd sn 2 f , (18) 

where the clique differences in each direction are defined as 
s1d2n 5 sn2Gdsn. Here, Gd is the one-pixel shift operator in 
direction d. The clique potentials quantify the interaction or 
correlation between pixels. 

A full Bayesian treatment 
was given in [47], where the 
authors utilized Gibbs sam-
p l i n g  w i t h  e m b e d d e d 
Metropolis sampling, the 
pseudocode of which is given 
in Table 3.

After sampling all image 
pixels with Metropolis method described in Table 4, sam-
ples are drawn from the mixing matrix and from the noise 
variance. When all of the unknowns are sampled, one itera-
tion of the Gibbs sampling algorithm is completed. Kayabol 
et al. provide simulation results which demonstrate signifi-
cant gain over 1-D Gibbs sampling when MRF-Gibbs sam-
pling is used [47]. 

FROM STATIONARY SOURCE SEPARATION 
TO NONSTATIONARY SOURCE SEPARATION
Most of the works in the literature consider separation of sta-
tionary mixing (constant mixing matrix) of stationary sources. 
However, the mixing matrix that is formed of the spectral indi-
ces of the cosmological sources at measurement channels is 
not necessarily constant. Most cosmological sources and the 
antenna receiver noise due to nonuniform scanning of the sky 
also demonstrate characteristics that cannot be described by 
stationary stochastic models. A limited number of work 
address this problem by extending the MCMC approaches to 
sequential Monte Carlo or particle filtering techniques. In par-
ticular, Costagli et al. in [48] propose a 1-D particle filter while 
in [49] they suggest the fusion of multiple 1-D particle filters 
that scan the image in different directions to approximate two-
dimensional (2-D) particle filters. 

Sequential Monte Carlo or particle filtering [51] is an 
extension of Kalman filtering [50] for the solution of dynamic 
systems to possibly nonlinear and non-Gaussian systems and 
signals. It has gained wide acceptance and success in tracking 
problems. A nonstationary source mixing system can be visu-
alized as a dynamic system and the mixing matrix and sources 
can be seen as hidden state variables of the system. Sequential 
Monte Carlo can potentially track space-varying spectral indi-
ces and nonlinear beam effects as well as space varying param-
eters of the stochastic models for the sources. 

[TABLE 4] METROPOLIS ALGORITHM FOR A SOURCE 
IMAGE. qi : PROPOSAL DENSITY FOR THE iTH PIXEL OF 
SOURCE n; u: UNIFORM POSITIVE RANDOM NUMBER IN 
THE UNIT INTERVAL; w: NEW SAMPLE TO BE TRIED; 
r : ACCEPTANCE RATIO OF THE GENERATED SAMPLE.

1) PRODUCE w FROM qi 1sn,i, w 2 .
2) CALCULATE r 5min a 1, 

p 1 u| 2
p 1u 1t2 2 b   

3) IF r $ 1 THEN st11
n,i 5w 

ELSE PRODUCE u | U 30, 1 4. 
IF u , r THEN sn,i

t115w,
ELSE sn,i

t115 sn,i
t  

4) i1 1 d NEXT PIXEL AND GO TO 1ST STEP.

[TABLE 3] ONE CYCLE OF GIBBS SAMPLING WITH EMBEDDED 
METROPOLIS.

1) FOR ALL SOURCE IMAGES, n5 1 : N 
FOR ALL PIXELS, i5 1 : J 

USING METROPOLIS METHOD IN TABLE 4 
s n,i

t11 d 5p 1sn,i 0 x1:M, u2sn,i

t 2 6 
2) FOR ALL ELEMENTS OF THE MIXING MATRIX, 1m, n 2 5 11, 1 2  : 1M, N 2  

am,n
t11 d 5p 1am,n 0 x1:M, u2am,n

t 2 6 
3) FOR THE NOISE VARIANCE, m5 1 : M 1sm

2 2 t11 d 5p 1sm
2 0 x1:M, u2sm

2
t 2 6

ALL OF THE POTENTIAL OF BAYESIAN 
MODELING SHOULD BE EXPLOITED TO 
DERIVE ANY INFORMATION PRESENT IN 
THIS OLDEST AND MOST IMPORTANT 

DATA SET OF OUR UNIVERSE.
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Another recent approach for dealing with nonstationary data is 
the incorporation of time and frequency information to the separa-
tion process. With this approach, potentially superior results can be 
obtained when compared to separation only in spatial domain or in 
frequency domain since diversity in both domains are exploited [52]. 

A related method is wavelet analysis, which provides the 
potential of modeling local features and deals with the problem 
in multiple scales. In [53], Moudden et al. extend the spectral 
matching ICA (SMICA) technique [12] to the wavelet domain. It 
is important to note that these techniques give the potential to 
deal with compact sources such as point sources in addition to 
the diffuse sources discussed in this article. Currently, time- 
frequency and wavelet-based techniques are mostly “blind” tech-
niques while the Bayesian versions are in development. One 
such method is described in [54] where Bobin et al. propose to 
decompose sources into overcomplete orthonormal bases (hence 
obtaining morphological components) as in 

 sj5 aD
k
wjk5 aD

k
ajk fk, (19)

where fk are the ortonormal bases. 
Assuming the sparsity of sources in these 
bases, they adopt Laplace priors for ajk. 
They note that cosmological sources 
such as CMB, galactic dust, and SZ clus-
ters can be represented rather well with 
orthonormal wavelet bases. They propose 
estimating the morphological compo-
nents wjk and the mixing matrix A by 
maximizing the joint posterior. 

FROM INDEPENDENT 
SOURCES TO 
DEPENDENT SOURCES
A common assumption among works in 
the literature is the independency of the 
cosmological sources. Although it is 
well known that CMB is independent 
from the rest of the sources, the galac-
tic sources demonstrate significant sta-
tistical dependence among themselves. 
Recently, a small number of researchers 
have started ad  dressing this problem. 
Outside the Bayesian context, Bedini 
et al. [55], [17] proposed a second-order 
statistics-based method, namely corre-
lated component analysis that also 
models the correlation between galactic 
components. The technique, despite 
being non-Bayesian, exploits the fact 
that the parametrization with spectral 
ind ices  reduces  the  number  o f 
unknowns in the mixing matrix, which 
compensates for the increase in the 
number of parameters in the covariance 

matrix due to the correlation between some of the sources. 
A more informed approach is presented in [56] and [57] that 

proposes a modified version of tree-dependent component anal-
ysis for the separation of dependent galactic sources. The tech-
nique provides a tree-based decomposition of hidden 
components in the observations using the Kullback-Leibler 
divergence. Simulations with WMAP data was successful in indi-
cating dependence between galactic sources. 

One of the challenges in this line of research is that almost 
no prior work exists on the dependence between galactic com-
ponents, therefore one can come up with only very generic pri-
ors. It should be noted that dependence models based on 
covariances have only limited use since we do not have any indi-
cations of linear dependence between galactic sources. A para-
metric separation approach can be very useful in modeling the 
dependence between galactic sources. 

A SIMULATION STUDY
We provide a simple simulation study on patches of dimension 
5123512. We mix patches of CMB, synchrotron, and dust 

Row 1

Row 2

Row 3

Row 4

(a) (b) (c)

[FIG6] Comparison of performances of separation algorithms. (a) CMB, (b) synchrotron, 
and (c) dust. Row 1: original patches, row 2: FastICA results, row 3: SMICA results, and 
row 4: MRF1Gibbs results.
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emission artificially using mixing coefficients reported in [8], 
and then try to recover original sources using some of the 
methods mentioned above. Figure 6 shows the original sources 
and the separation results. In Figure 7, we calculated the angu-
lar power spectrum of estimated CMB for each technique. We 
see that Gibbs sampling with MRF image model and SMICA 
obtain the angular power spectrum rather well, while FastICA 
cannot. Despite the success of SMICA in obtaining CMB, in 
Figure 6, we see that it fails recovering galactic sources that is 
the manifestation of the unsuitability of the stationarity 
assumption for these sources. 

The reader is referred to [58] for a detailed simulation study 
of some blind or semiblind methods with a Bayesian technique 
[41] by the Planck consortium. Another simulation study can be 
found in [47]. 

CONCLUSIONS
In this article, we defined the problem of cosmological source 
separation problem from multispectral measurements in a 
Bayesian framework and presented a panorama of Bayesian 
source separation methods that were proposed in the litera-
ture. We presented some new research frontiers where work is 
under progress, particularly nonstationary source separation, 
image separation, and dependent component analysis. 

Despite the speed of blind source separation methods, they 
lack the flexibility of Bayesian framework in providing increas-
ingly complex models for cosmological variables and for error 
analysis. With the arrival of WMAP and Planck satellite data, we 
will have the possibility of looking into increasingly detailed 
models that will also create the need to make error analysis for 
new models. All of these and more are handled seamlessly by the 
Bayesian framework, which provides us with the means to 
model our uncertainty about cosmological sources and propa-
gate it to cosmological parameters. 

We believe that the computational complexity of Bayesian 
methods should not be discouraging. All of the potential of 
Bayesian modeling should be exploited to derive any infor-
mation present in this oldest and most important data set of 
our Universe. 
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